login
A020964
Sum of Floor[ 3*(1+sqrt(2))^(n-k) ] for k from 1 to infinity.
1
4, 11, 28, 70, 171, 417, 1010, 2444, 5905, 14263, 34440, 83154, 200759, 484685, 1170142, 2824984, 6820125, 16465251, 39750644, 95966558, 231683779, 559334137, 1350352074, 3260038308, 7870428713, 19000895759
OFFSET
1,1
LINKS
C. Kimberling, Problem 10520, Amer. Math. Mon. 103 (1996) p. 347.
MATHEMATICA
Table[t=0; k=0; While[k++; s=Floor[3*(1+Sqrt[2])^(n-k)]; s>0, t= t+s]; t, {n, 26}]
Table[Sum[Floor[3*(1+Sqrt[2])^(n-k)], {k, 1, 1000}], {n, 0, 50}] (* G. C. Greubel, Sep 30 2018 *)
PROG
(PARI) for(n=1, 50, print1(sum(k=1, 2*n, floor(3*(1+sqrt(2))^(n-k))), ", ")) \\ G. C. Greubel, Sep 30 2018
(Magma) [(&+[Floor(3*(1+sqrt(2))^(n-k)): k in [1..2*n]]): n in [1..50]] // G. C. Greubel, Sep 30 2018
CROSSREFS
Sequence in context: A339252 A005409 A245124 * A113067 A290890 A152689
KEYWORD
nonn
EXTENSIONS
Revised Feb 03 1999. Revised Nov 30 2010.
STATUS
approved