login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113067 Expansion of -x/((x^2+x+1)*(x^2+3*x+1)); Invert transform gives signed version of Tetrahedral numbers A000292. 2
0, -1, 4, -11, 28, -72, 188, -493, 1292, -3383, 8856, -23184, 60696, -158905, 416020, -1089155, 2851444, -7465176, 19544084, -51167077, 133957148, -350704367, 918155952, -2403763488, 6293134512, -16475640049, 43133785636, -112925716859, 295643364940, -774004377960 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Invert((a(n)) gives (0, -1, 4, -10, 20, -35, ) = A000292 (with alternating signs). Binomial(a(n)) gives (0, -1, 2, -2, 4, -7, 10) = A094686 (with alternating signs, from 2nd term). a(n) + a(n+1) + a(n+2) = ((-1)^n)A001906(n+2) = ((-1)^n)F(2n+4). a(n) + 3*a(n+1) + 3*a(n+2) + a(n+3) = ((-1)^(n+1))A109961(n+2)

REFERENCES

C. Dement, Floretion Integer Sequences (work in progress).

LINKS

Table of n, a(n) for n=0..29.

PROG

Floretion Algebra Multiplication Program, FAMP Code: 2basei[C*F]; C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; F = + .5'i + .5'ii' + .5'ij' + .5'ik'

(Sage) [((lucas_number1(n, 3, 1)-lucas_number1(n, 1, 1)))/(-2) for n in xrange(1, 32)] # Zerinvary Lajos, Jul 06 2008

CROSSREFS

Cf. A000292, A113067, A113068, A094686, A001906, A109961.

Sequence in context: A005409 A245124 A020964 * A152689 A217918 A000604

Adjacent sequences:  A113064 A113065 A113066 * A113068 A113069 A113070

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Oct 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 18:58 EDT 2017. Contains 287129 sequences.