This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152689 Apply partial sum operator thrice to factorials. 2
 0, 0, 0, 1, 4, 11, 28, 79, 284, 1363, 8356, 61583, 523924, 5024179, 53479148, 624890431, 7946278828, 109195935539, 1612048228564, 25439293045903, 427278358483556, 7609502950269523, 143217213477235804, 2840152418116022399 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Table of n, a(n) for n = 0..450 FORMULA From G. C. Greubel, Sep 13 2018: (Start) a(n) = Sum_{j=0..(n-1)} Sum_{m=0..(j-1)} !m, where !n = Sum_{k=0..(n-1)} k! = A003422(n). a(n) = ((n^2 -3*n +1) * !n - (n-2)*n! + 2*(n-1))/2. a(n) = Sum_{j=0..(n-1)} ((j-1) * !j - j! + 1) = Sum_{j=0..(n-1)} A014144(n). (End) MATHEMATICA With S[n_]:= Sum[k!, {k, 0, n-1}]; Table[Sum[Sum[S[j], {j, 0, m-1}], {m, 0, n -1}], {n, 0, 30}] (* or *) Table[((n^2 - 3*n + 1)*S[n] - (n - 2)*n! + 2*(n - 1))/2, {n, 0, 30}] (* G. C. Greubel, Sep 13 2018 *) PROG (PARI) for(n=0, 30, print1(((n^2-3*n+1)*sum(k=0, n-1, k!) - (n-2)*n! + 2*(n -1))/2, ", ")) \\ G. C. Greubel, Sep 13 2018 (MAGMA) [0] cat [((n^2 -3*n +1)*(&+[Factorial(k): k in [0..(n-1)]]) -(n-2)*Factorial(n) +2*(n-1))/2: n in [1..30]]; // G. C. Greubel, Sep 13 2018 CROSSREFS Cf. A152687, A014144. Sequence in context: A020964 A113067 A290890 * A217918 A000604 A153876 Adjacent sequences:  A152686 A152687 A152688 * A152690 A152691 A152692 KEYWORD nonn,changed AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 10 2008 EXTENSIONS Prepended zeros and changed offset by G. C. Greubel, Sep 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 00:22 EDT 2018. Contains 315270 sequences. (Running on oeis4.)