login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020554 Number of multigraphs on n labeled edges (without loops). 13
1, 1, 3, 16, 139, 1750, 29388, 624889, 16255738, 504717929, 18353177160, 769917601384, 36803030137203, 1984024379014193, 119571835094300406, 7995677265437541258, 589356399302126773920, 47609742627231823142029, 4193665147256300117666879 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Or, number of bicoverings of an n-set.

Or, number of 2-covers of [1,...,n].

REFERENCES

G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..100

Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see s_n).

L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]

G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248.

G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]

FORMULA

E.g.f.: exp(-3/2+exp(x)/2)*Sum(exp(binomial(n, 2)*x)/n!, n=0..infinity) [Comtet]. - Vladeta Jovovic, Apr 27 2004

E.g.f. (an equivalent version in Maple format): G:=exp(-1+(exp(z)-1)/2)*sum(exp(s*(s-1)*z/2)/s!, s=0..infinity);

E.g.f.: exp((exp(x)-1)/2)*Sum(A020556(n)*(x/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004

Stirling_2 transform of A014500.

The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1).

MATHEMATICA

Ceiling[ CoefficientList[ Series[ Exp[ -1 + (Exp[ z ] - 1)/2 ]Sum[ Exp[ s(s - 1)z/2 ]/s!, {s, 0, 21} ], {z, 0, 9} ], z ] Table[ n!, {n, 0, 9} ] ] (* Mitch Harris, May 01 2004 *)

CROSSREFS

Cf. A002718, A020555.

Sequence in context: A230318 A006057 A002719 * A062874 A109398 A294003

Adjacent sequences:  A020551 A020552 A020553 * A020555 A020556 A020557

KEYWORD

nonn,nice,easy

AUTHOR

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 04:03 EST 2017. Contains 294912 sequences.