REFERENCES

TEI., O. E.: Orthogonal polynomials defined by difference equations, Amer. Math. 63 (1941) 185.

The University of Sydney, Department of Mathematical Statistics

(Received January 2, 1967.)
(Revised August 2, 1967.)

BIRecouvREMENTS ET BIREVêTEMENTS D'UN ENSEMBLE FINI

par

L. COMET

Studia Scientiarum Mathematicarum Hungaricae 3 (1968)
137-51

Note: but est de calculer et d'estimer le nombre $c(n)$ des recouvrements d'un ensemble fini E à n éléments, tels que chaque point de E soit deux fois recouvert; en abrégé, „birecouvrements“; ce nombre $c(n)$ généralise le nombre (de Bell) $b(n)$ des partitions de E ([1], [2]) puisqu'une partition est un recouvrement tel que chaque point de E soit une fois recouvert. Les blocs d’un birecouvrement étant, par définition, tous distincts, nous sommes amenés à étudier des systèmes de parties de E plus généraux que les birecouvrements et que nous appelons „birevêtements“; chaque point de E est encore deux fois recouvert mais certains blocs du système peuvent ne pas différer; leur nombre $r(n)$ est en relation simple avec $c(n)$. Au passage s’introduit le nombre $c(n, k)$ des birecouvrements à k blocs: il généralise le nombre de Stirling de seconde espèce $S(n, k)$ ([3], p. 32). Nous donnons enfin une estimation et une fonction génératrice des $c(n)$ et $r(n)$.

1. Introduction

Dans tout ce qui suit, le nombre d'éléments d'un ensemble M se note $|M|$. Soit E un ensemble fini ayant n éléments, $|E| = n$, et soit $\mathcal{P}(E)$ l'ensemble de ses parties non vides.

Définition 1. Un système \mathcal{S} de E est un ensemble non vide (non ordonné) de parties non vides distinctes de E: $\mathcal{S} \subset \mathcal{P}(E)$. Les blocs d'un système sont les parties de E dont il est constitué. Un k-système est un système constitué de k blocs.

Définition 1’. Un agrégat \mathcal{A} de E est un ensemble non vide (non ordonné) de parties non vides de E, chacune pouvant apparaître plusieurs fois; la donnée d'un agrégat \mathcal{A} equivaut donc à la donnée d'une fonction φ définie sur $\mathcal{P}(E)$ et dont les valeurs sont des entiers ≥ 0, telle que $\varphi(A)$ soit le nombre de fois qu'apparaît dans \mathcal{A} la partie $A \in \mathcal{P}(E)$. Il pourra être utile de partager $\mathcal{P}(E)$ en classes $e_h(\mathcal{A})$, h entier ≥ 0, définies par:

$$e_h(\mathcal{A}) = \varphi^{-1}(h) = \{A | A \in \mathcal{P}(E), \varphi(A) = h\}.$$

Les blocs d'un agrégat sont encore les parties de E dont il est constitué. Un k-agrécat est un agrégat constitué de k blocs, distincts ou non:

$$\sum_{A \in \mathcal{P}(E)} \varphi(A) = k;$$

en d'autre termes, c'est une k-combinaison avec répétition dans $\mathcal{P}(E)$.

Studia Scientiarum Mathematicarum Hungaricae 3 (1968) 137
Définition 2. Un système \mathcal{S} est un "birecouvrement" si chaque $x \in E$ appartient exactement à 2 blocs (distincts) de \mathcal{S} ; on note $c(E)$ l'ensemble des birecouvrements de E, et l'on pose $c(n) = c(E)$. Un k-birecouvrement est un recouvrement constitué de k blocs ; on note $c(E, k)$ l'ensemble des k-birecouvrements de E, et l'on pose $c(n, k) = c(E, k)$. Evidemment :

$$c(n) = \sum_k c(n, k).$$

Définition 2'. Un agrégat \mathcal{A} est un "birevêtement" si chaque $x \in E$ appartient exactement à 2 blocs, distincts ou non, de \mathcal{A} ; on note $v(E)$ l'ensemble des birevêtements de E, et l'on pose $v(n) = v(E)$. Un k-birevêtement est un birevêtement constitué de k blocs ; on notera $v(E, k)$ l'ensemble des k-birevêtements de E, et l'on pose $v(n, k) = v(E, k)$. Evidemment :

$$v(n) = \sum_k v(n, k).$$

Il est clair que $c(E) \subseteq v(E)$. Par exemple, pour $E = \{1, 2, 3, 4\}$,

$\mathcal{A}_1 \equiv \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$, $\mathcal{A}_2 \equiv \{\{1\}, \{2, 3\}, \{4\}\}$, $\mathcal{A}_3 \equiv \{\{1, 2, 3\}, \{3, 4\}\}$, $\mathcal{A}_4 \in c(E)$.

Donnons un exemple de problème de dénombrement où intervient les nombres $c(n, k)$ et $v(n, k)$. Soient deux jeux absolument identiques de 52 cartes à jouer ; on les mélange ensemble et on obtient ainsi un jeu de 104 cartes par deux indiscernables. On répartit les 104 cartes en 5 tas tels que dans chaque tas, toutes les valeurs des cartes soient différentes, l'ordre des tas et des cartes n'intervenant pas. Il est facile de voir que le nombre des répartitions de cartes en 5 tas ayant la propriété requise est égal à $v(52, 5)$; en effet, soit E l'ensemble des 52 valeurs possibles de cartes : chaque tas détermine un bloc de E et une répartition des cartes en 5 tas équivaut à la donnée d'un 5-birevêtement de E, puisque chacune des 52 valeurs apparait dans deux tas différents. Si l'on ajoute la condition que deux tas distincts ne sont pas composés de valeurs toutes égales, le nombre des répartitions possibles devient $c(52, 5)$.

2. Relation entre les $c(n, k)$ et les $v(n, k)$

A tout k-birevêtement \mathcal{B} de E, $|E| = n$, associons les 4 ensembles suivants :

(1) l'ensemble $\varepsilon_1(\mathcal{B}) \in \mathcal{S}(E)$, voir définition 1'.

(2) l'ensemble $\varepsilon_2(\mathcal{B})$.

(3) la partie $\mathcal{B}_2(\mathcal{B}) = \bigcup_{B \in \varepsilon_2(\mathcal{B})} B$ de E ; pour $a = |E_2(\mathcal{B})|$, on a évidemment $0 \leq a \leq n$.

(4) la partie $\mathcal{B}_1(\mathcal{B}) = E \setminus \mathcal{B}_2(\mathcal{B})$ de E.

Si $\varepsilon_2(\mathcal{B})$ est vide, $\varepsilon_1(\mathcal{B}) = \mathcal{B}$ est un k-birecouvrement de E. Si $\varepsilon_1(\mathcal{B})$ est vide, $\varepsilon_2(\mathcal{B})$ est une $\frac{k}{2}$-partition de E. Sinon,

$$1 \leq a = |E_2(\mathcal{B})| \leq n - 1$$

et, si l'on pose $u = |\varepsilon_2(\mathcal{B})|$, il apparaît que $|\varepsilon_1(\mathcal{B})| = k - 2u$; dans ces conditions $\varepsilon_2(\mathcal{B})$ est une u-partition de $E_2(\mathcal{B})$ et $\varepsilon_1(\mathcal{B})$ est un $(k-2u)$-birecouvrement de $E_1(\mathcal{B})$, $1 \leq u \leq \lfloor k/2 \rfloor, a$.

Réciproquement, la donnée des quatre ensembles E_1, E_2, p, q définit c après, équivalant à la donnée d'un k-birevêtements :

(1) E_1 et E_2, parties de E, telles que $E_1 \cap E_2 = \emptyset$, $E_1 \cup E_2 = E$, $0 \leq |E_2| \equiv a \leq n$

(2) p qui est une u-partition de E_2 quand $E_2 \neq \emptyset$ avec $1 \leq u \leq \lfloor k/2 \rfloor, a$, et qui est vide dans le cas contraire.

(3) q qui est un $(k-2u)$-birevêtement de E_1 quand $E_1 \neq \emptyset$, et qui est vide autrement.

On obtiendra donc tous les k-birevêtements en faisant varier a et u indépendamment de manière convenable ; ainsi, $S(a, u)$ désignant le nombre de u-partition d'un ensemble à a éléments (nombres de Stirling de seconde espèce, [3] p. 32 prolongé par $S(0, 0) = 1$, il vient, avec k et $n \geq 1$:

$$v(n, k) = \sum_{0 \leq a \leq \lfloor k/2 \rfloor, a \leq n} \left\{ \binom{n}{a} \cdot S(a, u) \cdot c(n-a, k-2u) \right\},$$

le facteur $\binom{n}{a}$ correspondant au nombre de choix de $E_2 \subseteq E$, $|E_2| = a$. En définiteive :

Proposition 1. Les nombres $c(n, k)$ de k-birecouvrements et $v(n, k)$ de k-birevêtements de E, $|E| = n \geq 1$, $k \geq 1$, sont liés par :

(1) $v(n, k) = c(n, k) + \sum_{1 \leq a \leq n} \left\{ \binom{n}{a} \cdot \sum_{1 \leq u \leq \lfloor k/2 \rfloor, a \leq n} S(a, u) \cdot c(n-a, k-2u) \right\}.$

Cette formule (1) permet le calcul de proche en proche des $v(n, k)$ en fonction de $c(n, k)$. Pour inverser cette formule, faisons la

Convention de prolongement. Prolongeons les suites doubles :

$$S(n, k), \ c(n, k), \ v(n, k), \ \binom{n}{k}$$

de la manière suivante :

$$S(n, k) \equiv 0 \ \text{si} \ k > n \ \text{ou si} \ k \equiv 0 \ \text{ou si} \ n \equiv 0, \ \text{sauf} \ S(0, 0) \equiv 1, \ c(n, k) \ \text{et} \ r(n, k) \equiv 0 \ \text{si} \ k \equiv 0 \ \text{ou si} \ n \equiv 0, \ \text{sauf} \ c(0, 0) \equiv r(0, 0) \equiv 1, \ \binom{n}{k} \equiv 0 \ \text{si} \ k \equiv 0 \ \text{ou si} \ k \equiv 0 \ \text{ou si} \ n \equiv 0, \ \text{avec} \ \binom{n}{0} = \binom{0}{n} \equiv 1, \ \text{si} \ n \equiv 0.
DÉFINITION 2. Un système \(\mathcal{S} \) est un "birecouverment" si chaque \(x \in E \) appartient exactement à 2 blocs (distincts) de \(\mathcal{S} \); on note \(c(E) \) l'ensemble des birecouverments de \(E \), et l'on pose \(c(n) = c(E) \). Un k-birecouverment est un birecouverment constitué de \(k \) blocs; on note \(c(E, k) \) l'ensemble des \(k \)-birecouverments de \(E \), et l'on pose \(c(n, k) = c(E, k) \). Évidemment:

\[
c(n) = \sum_k c(n, k).
\]

DÉFINITION 2'. Un agrégat \(\mathcal{S} \) est un "birevêtement" si chaque \(x \in E \) appartient exactement à 2 blocs. Distincts ou non, de \(\mathcal{S} \); on note \(v(E) \) l'ensemble des birevêtements de \(E \), et l'on pose \(v(k) = v(E) \). Un \(k \)-birevêtement est un birevêtement constitué de \(k \) blocs; on notera \(v(E, k) \) l'ensemble des \(k \)-birevêtements de \(E \), et l'on pose \(v(n, k) = v(E, k) \). Évidemment:

\[
v(n) = \sum_k v(n, k).
\]

Il est clair que \(c(E) \subset v(E) \). Par exemple, pour \(E = \{1, 2, 3, 4\} \),

\[
\mathcal{A}_1 = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}, \quad \mathcal{A}_2 = \{\{1\}, \{2, 3\}, \{4\}\}, \quad \mathcal{A}_3 = \{\{1, 2, 3\}, \{3, 4\}, \{1, 2, 4\}\},
\]

on a \(\mathcal{A}_1 \notin v(E) \), \(\mathcal{A}_2 \notin v(E) \) et \(\mathcal{A}_3 \notin v(E) \).

Donnons un exemple de problème de dénombrement où interviennent les nombres \(c(n, k) \) et \(v(n, k) \). Soient deux jeux absolument identiques de 52 cartes à jouer: on les mélange ensemble et l'on obtient ainsi un jeu de 104 cartes deux par deux indiscernables. On répartit les 104 cartes en 5 tas tels que dans chaque tas, toutes les valeurs des cartes soient différentes, l'ordre des tas et des cartes ne s'interchange pas. Il est facile de voir que le nombre des répartitions de cartes en 5 tas ayant la propriété requise est égal à \(v(52, 5) \); en effet, soit \(E \) l'ensemble des 52 valeurs possibles de cartes: chaque tas détermine un bloc de \(E \) et une répartition des cartes en 5 tas équivaut à la donnée d'un 5-birevêtement de \(E \), puisque chacune des 52 valeurs apparaît dans deux tas différents. Si l'on ajoute la condition que deux tas distincts ne sont pas composés de valeurs toutes égales, le nombre des répartitions possibles devient \(c(52, 5) \).

2. Relation entre les \(c(n, k) \) et les \(v(n, k) \)

A tout \(k \)-birevêtement \(\mathcal{S} \) de \(E \), \(|E| = n \), associons les 4 ensembles suivants:

1. l'ensemble \(\mathcal{S}(E) \) (voir définition 1'),
2. l'ensemble \(\mathcal{A}(E) \),
3. la partie \(E_1(\mathcal{S}) = \bigcup_{x \in \mathcal{S}} B \) de \(E \); pour \(a = |E_1(\mathcal{S})| \), on a évidemment \(0 \leq a \leq n \).
4. la partie \(E_1(\mathcal{S}) = \bigcup_{x \in \mathcal{S}} B \) de \(E \).

Si \(\mathcal{S}(E) \) est vide, \(\mathcal{S}(E) = \emptyset \) est un \(k \)-birecouverment de \(E \). Si \(\mathcal{S}(E) \) est vide, \(\mathcal{S}(E) = \emptyset \) est une \(\frac{k}{2} \)-partition de \(E \). Sinon,

\[
1 \leq a = |E_2(\mathcal{S})| \leq n - 1
\]

et, si l'on pose \(n = |E_2(\mathcal{S})| \), il apparaît que \(|x(\mathcal{S})| = k - 2u \); dans ces conditions \(x(\mathcal{S}) \) est une \(u \)-partition de \(E_2(\mathcal{S}) \), et \(x(\mathcal{S}) \) est un \((k - 2u) \)-birecouverment de \(E_2(\mathcal{S}) \), \(1 \leq u \equiv \{k/2, a\} \).

Réciproquement, la donnée des quatre ensembles \(E_1, E_2, p, q \), définis ci-dessus, équivaut à la donnée d'un \(k \)-birevêtements:

1. \(E_1 \) et \(E_2 \), parties de \(E \), telles que
\[
E_1 \cap E_2 = 0, \quad E_1 \cup E_2 = E, \quad 0 \leq |E_2| \equiv a \leq n
\]

2. \(p \) qui est une \(u \)-partition de \(E_2 \) quand \(E_2 \neq \emptyset \) avec \(1 \leq u \equiv \{k/2, a\} \), et qui est vide dans le cas contraire.

3. \(q \) qui est un \((k - 2u) \)-birecouverment de \(E_1 \) quand \(E_1 \neq \emptyset \), et qui est vide autrement.

On obtiendra donc tous les \(k \)-birevêtements en faisant varier \(a \) et \(u \) indépendamment de manière convenable; ainsi, \(S(a, u) \) désignant le nombre de \(u \)-partition d'un ensemble de \(a \) éléments (nombre de Stirling de seconde espèce, [3] p. 32 prolongé par \(S(0, 0) = 1 \), il vient, avec \(k + n \geq 1 \):

\[
\begin{align*}
\lambda(n, k) &= \sum_{0 \leq a \leq n} \left(\begin{array}{c} n \\ a \end{array} \right) \cdot S(a, u) \cdot c(n - a, k - 2u) \\
\end{align*}
\]

le facteur \(\left(\begin{array}{c} n \\ a \end{array} \right) \) correspondant au nombre de choix de \(E_2 \subset E, |E_2| = a \). En définitive

PROPOSITION 1. Les nombres \(c(n, k) \) de \(k \)-birecouverments et \(v(n, k) \) de \(k \)-birevêtements de \(E \), \(|E| = n \geq 1, k \geq 1 \), sont liés par:

\[
v(n, k) = c(n, k) + \sum_{1 \leq u \leq n} \left(\begin{array}{c} n \\ u \end{array} \right) \sum_{1 \leq a \leq \{n, k/2\}} S(a, u) \cdot c(n - a, k - 2u) \]
\]

Cette formule (1) permet le calcul de poche en poche des \(v(n, k) \) en fonction de \(c(n, k) \). Pour inverser cette formule, faisons la

CONVENTION DE PROLONGEMENT. Prolongeons les suites doubles

\[
S(n, k), \quad c(n, k), \quad v(n, k), \quad \left(\begin{array}{c} n \\ k \end{array} \right)
\]

de la manière suivante:

\[
S(n, k) \equiv 0 \text{ si } k > n \text{ ou si } k \equiv 0 \text{ ou si } n \equiv 0 \text{, sauf } S(0, 0) \equiv 1.
\]

\[
c(n, k) \text{ et } v(n, k) \equiv 0 \text{ si } k \equiv 0 \text{ ou si } n \equiv 0 \text{, sauf } c(0, 0) \equiv v(0, 0) \equiv 1.
\]

\[
\left(\begin{array}{c} n \\ k \end{array} \right) \equiv 0 \text{ si } k > n \text{ ou si } k < 0 \text{ ou si } n < 0, \text{ avec}
\]

\[
\left(\begin{array}{c} n \\ 0 \end{array} \right) \equiv 1, \text{ si } n \equiv 0.
\]
Compte tenu de cette convention, la formule (1) s’écrit alors:

\[v(n, k) = \sum_{a, u \geq 0} \binom{n}{a} \cdot S(a, u) \cdot c(n - a, k - 2u), \quad n, k \geq 0. \]

Définissons alors les fonctions génératrices formelles \(C(y, z) \) et \(V(y, z) \) des \(c(n, k) \) et \(v(n, k) \) par:

\[C(y, z) = \sum_{n, k \geq 0} c(n, k) \frac{z^n}{n!}; \quad V(y, z) = \sum_{n, k \geq 0} v(n, k) y^k z^n. \]

(2) et (3) entraînent:

\[V(y, z) = \sum_{n, k, a, u \geq 0} \binom{n}{a} \cdot S(a, u) \cdot c(n - a, k - 2u) \cdot y^k z^n/n!. \]

Faisons le changement de variables de sommations \(N = n + t, K = 2s + k \) et identifions les coefficients de \(y^K \cdot z^N \) de chaque membre:

\[c(N, K) = \sum_{l, t \geq 0} \binom{N}{l} (-1)^t \cdot S(t, s) \cdot v(N - t, K - 2s), \]

ou encore, après le nouveau changement de variables \(n = N, k = K, a = t, u = s \) et avec notre convention:

Proposition 3. On peut calculer les \(c(n, k) \) à partir des \(v(n, k) \) par la formule suivante, inverse de (1), \(n \) et \(k \geq 1 \):

\[c(n, k) = v(n, k) + \sum_{1 \leq a \leq n} \binom{n}{a} \sum_{1 \leq u \leq \min(n, k/2)} (-1)^u \cdot S(a, u) \cdot v(n - a, k - 2u). \]

3. Récurrence sur les nombres \(c(n, k) \) de \(k \)-bircouvrements de \(E, |E| = n \)

Tout ce paragraphe n’utilise que des observations élémentaires sans le moindre recours à la théorie des fonctions génératrices.

(1) **Notations.** Il est important, dans ce qui suit, de ne pas oublier la convention faite plus haut. Une légère réflexion montre d’abord que: \(c(i, 0) = c(i, 1) = c(i, 2) = 0 \) pour \(i \geq 1 \) et que \(c(1, j) = 0 \) si \(j \geq 2 \). On adjoins à \(E \), \(|E| = n \), \(n \geq 1 \), un \((n + 1)\)ème élément \(x \) et soit \(F = E \cup \{x\} \). Considérons l’ensemble \(c(F, k + 1) \), \(k \geq 3 \) (définition 2) des bircouvrements de \(F \), à \((k + 1)\) blocs. Pour \(\mathcal{A} \in c(F, k + 1) \), soient \(A(\mathcal{A}) \) et \(B(\mathcal{A}) \) les deux cycles (distincts) de \(\mathcal{A} \), qui contiennent \(x \), leur ordre n’intervenant évidemment pas; soient aussi \(A_0(\mathcal{A}) = A(\mathcal{A}) \setminus \{x\} \), \(B_0(\mathcal{A}) = B(\mathcal{A}) \setminus \{x\} \). Partageons alors \(c(F, k + 1) \) en les cinq classes disjointes suivantes:

\[a : A_0(\mathcal{A}) \in c(F, k + 1), A_0(\mathcal{A}) \neq 0, \quad a \in c(F, k + 1), \quad b : A_0(\mathcal{A}) \neq 0, \quad a \in c(F, k + 1), \quad b_0(\mathcal{A}) = 0, \]

\[d = \{A_0(\mathcal{A}) \neq 0, A_0(\mathcal{A}) \in c(F, k + 1), \quad B_0(\mathcal{A}) = 0 \}, \]

\[e = \{A_0(\mathcal{A}) \neq 0, A_0(\mathcal{A}) \in c(F, k + 1), \quad B_0(\mathcal{A}) = 0 \}, \]

\[f = \{A_0(\mathcal{A}) \neq 0, A_0(\mathcal{A}) \in c(F, k + 1), \quad B_0(\mathcal{A}) = 0 \}. \]

L’ordre de \(A_0(\mathcal{A}) \) et \(B_0(\mathcal{A}) \) n’intervenant pas, il est clair que tous les cas possibles pour les \(\mathcal{A} \) ont été épuisés, donc que:

\[c(n + 1, k + 1) = \sum_{a \in c(F, k + 1)} |a| + |b| + |d| + |e| + |f|. \]

(II) **Calcul de \(a \).** Soit \(x \) la fonction définie sur \(a \) et à valeurs dans \(c(F, k) \), telle que, pour \(\mathcal{A} \in a(\mathcal{A}) \equiv \text{trace de } \mathcal{A} \text{ sur } E \), \(\mathcal{A} \setminus \{x\} = |E \setminus \{x\}| \). \(x \) est visiblement surjective; tout \(\mathcal{A} \in c(F, k) \) est atteint. Posons alors, comme d’habitude, pour \(\mathcal{A} \in c(F, k) \):

\[x^{-1}(\mathcal{A}) = \{ \mathcal{A} \setminus \{x\}, \mathcal{A}(\mathcal{A}) = \mathcal{A} \}. \]
Compte tenu de cette convention, la formule (1) s’écrit alors:

\[v(n, k) = \sum_{a, u \geq 0} \left(\begin{array}{c} n \\ a \end{array} \right) \cdot S(a, u) \cdot c(n-a, k-2u), \quad n, k \geq 0. \]

Définissons alors les fonctions génératrices formelles \(C(y, z) \) et \(V(y, z) \) des \(c(n, k) \) et \(v(n, k) \) par:

\[C(y, z) = \sum_{n, k \geq 0} c(n, k) \cdot \frac{z^n}{n!}; \quad V(y, z) = \sum_{n, k \geq 0} v(n, k) Y^k \cdot \frac{z^n}{n!}. \]

(2) et (3) entraînent:

\[V(y, z) = \sum_{n, k, a, u \geq 0} \left(\begin{array}{c} n \\ a \end{array} \right) \cdot S(a, u) \cdot c(n-a, k-2u) \cdot y^k \cdot \frac{z^n}{n!}. \]

ou encore, en faisant le changement de variable de sommation: \(b \equiv n-a, \quad w \equiv k-2u \):

\[V(y, z) = \sum_{a, b, w \geq 0} S(a, u) \cdot c(b, w) \cdot \frac{z^{a+b}}{a! b!} \cdot y^w \cdot z^w. \]

Utilisant l’identité bien connue ([3], p. 43)

\[\sum_{a \geq 0} S(a, u) \cdot \frac{z^a}{a!} = \frac{(e^z-1)^w}{u!}, \]

il vient:

\[V(y, z) = \sum_{b, w \geq 0} \frac{\left(y^2 (e^z-1) \right)^w}{u!} \cdot c(b, w) \cdot y^w \cdot \frac{z^b}{b!} = \exp \left\{ y^2 (e^z-1) \right\} \cdot S(b, w) \cdot y^w \cdot \frac{z^b}{b!}. \]

Proposition 2. Les fonctions génératrices \(C(y, z) \) et \(V(y, z) \) des \(c(n, k) \) et \(v(n, k) \), définies en (3) sont liées par:

\[V(y, z) = \exp \left\{ y^2 (e^z-1) \right\} \cdot C(y, z). \]

Il est alors facile d’inverser (1); en effet, d’après (4) et (5):

\[C(y, z) = \exp \left\{ -y^2 (e^z-1) \right\} \cdot \sum_{n, k \geq 0} v(n, k) \cdot y^k \cdot \frac{z^n}{n!} = \sum_{n, k \geq 0} (-1)^k \frac{y^{2k} (e^z-1)^k}{k!} \cdot v(n, k) \cdot y^k \cdot \frac{z^n}{n!} = \sum_{n, k, l \geq 0} (-1)^k S(t, s) \cdot v(n, k) \cdot y^{2k} \cdot \frac{z^{n+l}}{n! l!}. \]

Faisons le changement de variables de sommations \(N \equiv n + t, \quad K \equiv 2s + k \) et identifions les coefficients de \(y^K \cdot \frac{z^N}{N!} \) de chaque membre:

\[c(N, K) = \sum_{k \geq 0} \left(\begin{array}{c} n \\ k \end{array} \right) (-1)^k \cdot S(t, s) \cdot v(N-t, K-2s), \]

ou encore, après le nouveau changement de variables \(n \equiv N, \quad k \equiv K, \quad a \equiv t, \quad u \equiv s \) et avec notre convention:

Proposition 3. On peut calculer les \(c(n, k) \) à partir des \(v(n, k) \) par la formule suivante, inverse de (1), \(n \) et \(k \) \(\geq 1 \):

\[c(n, k) = v(n, k) + \sum_{1 \equiv m \equiv n} \left(\begin{array}{c} n \\ m \end{array} \right) \sum_{a, k, l \equiv m} (-1)^a \cdot S(a, u) \cdot v(n-a, k-2a). \]

3. Récurrence sur les nombres \(c(n, k) \) de \(k \)-bircouvertures de \(E, |E| = n \)

Tout ce paragraphe n’utilise que des observations élémentaires sans le moindre recours à la théorie des fonctions génératrices.

(I) **Notations.** Il est important, dans ce qui suit, de ne pas oublier la convention faite plus haut. Une légère réflexion montre d’abord que: \(c(i, 0) = c(i, 1) = c(1, 2) = 0 \) pour \(i \equiv 1 \) et que \(c(1, j) = 0 \) si \(j \equiv 1 \). Adjoignons à \(E, |E| = n \equiv 1 \), un \((n+1)\)ème élément \(x \) et soit \(F = E \cup \{ x \} \). Considérons l’ensemble \(c(F, k + 1), \quad k \equiv 3 \) (définition 2) des bircouvertures de \(F \), à \((k+1)\) blocs. Pour \(\mathcal{R} \in c(F, k + 1) \), soient \(A(\mathcal{R}) \) et \(B(\mathcal{R}) \) les deux blocs (distincts) de \(\mathcal{R} \), qui contiennent \(x \), leur ordre n’intervenant évidemment pas; soient aussi \(A(\mathcal{R}) \equiv A(\mathcal{R}) \cup \{ x \} \), \(B(\mathcal{R}) \equiv B(\mathcal{R}) \cup \{ x \} \). Partageons alors \(c(F, k + 1) \) en les cinq classes disjointes suivantes:

\[\begin{align*}
 a & \equiv \{ \mathcal{R} | \mathcal{R} \in c(F, k + 1) \} : A(\mathcal{R}) \neq 0, \quad A(\mathcal{R}) \notin \mathcal{R} \Rightarrow B(\mathcal{R}) = 0 \\
 b & \equiv \{ \mathcal{R} | \mathcal{R} \in c(F, k + 1) \} : A(\mathcal{R}) = 0, \quad A(\mathcal{R}) \notin \mathcal{R} \Rightarrow B(\mathcal{R}) \neq 0, \quad B(\mathcal{R}) \notin \mathcal{R} \\
 d & \equiv \{ \mathcal{R} | \mathcal{R} \in c(F, k + 1) \} : A(\mathcal{R}) \notin \mathcal{R} \Rightarrow B(\mathcal{R}) = 0 \\
 e & \equiv \{ \mathcal{R} | \mathcal{R} \in c(F, k + 1) \} : A(\mathcal{R}) = 0, \quad B(\mathcal{R}) \notin \mathcal{R} \Rightarrow B(\mathcal{R}) \neq 0, \quad B(\mathcal{R}) \notin \mathcal{R} \\
 f & \equiv \{ \mathcal{R} | \mathcal{R} \in c(F, k + 1) \} : A(\mathcal{R}) \notin \mathcal{R} \Rightarrow B(\mathcal{R}) \notin \mathcal{R} \Rightarrow \mathcal{R} \notin \mathcal{R} \\
\end{align*} \]

L’ordre de \(A(\mathcal{R}) \) et \(B(\mathcal{R}) \) n’intervenant pas, il est clair que tous les cas possibles pour \(\mathcal{R} \) ont été épuisés, donc que:

\[c(n + 1, k + 1) = |c(F, k + 1)| = |a| + |b| + |d| + |e| + |f|. \]

(II) **Calcul de \(a \):** Soit \(x \) la fonction définie sur \(a \) et à valeurs dans \(c(E, k) \), telle que, pour \(\mathcal{R} \in a, \quad a(\mathcal{R}) \equiv \text{trace de } \mathcal{R} \text{ sur } E = \{ R \cap E \mid R \in \mathcal{R} \} \). \(x \) est visiblement surjective; tout \(\mathcal{R} \in c(E, k) \) est atteint. Posons alors, comme d’habitude, pour \(\mathcal{R} \in c(E, k) \):

\[x^{-1}(\mathcal{R}) \equiv \{ \mathcal{R} \in a, \quad a(\mathcal{R}) = \mathcal{R} \}. \]
et cherchons le nombre d'éléments de $\alpha^{-1}(\mathcal{R})$. Pour construire les $\mathcal{R} \in \alpha^{-1}(\mathcal{R})$ à partir de \mathcal{A}, il suffit de choisir un bloc $B \in \mathcal{R}$, puis de le border par x, c'est-à-dire de le remplacer par $B \cup \{x\}$, comme \mathcal{R} possède k blocs, il y a k choix possibles du bloc B; donc $x^{-1}(\mathcal{R}) = k$ pour tout $\mathcal{R} \in c(E, k)$. Ainsi:

$$|a| = \sum_{\mathcal{R} \in c(E, k)} |x^{-1}(\mathcal{R})| - k \cdot c(n, k).$$

(III) Calcul de b. Définissons sur b la fonction β à valeurs dans $c(E, k+1)$ par: $\beta(\mathcal{R})$ trace de \mathcal{R} sur $E = (R \cap E | R \in \mathcal{R})$. β est surjective et, pour $\mathcal{R} \in c(E, k+1)$, on a $|\beta^{-1}(\mathcal{R})| = \left(\begin{array}{c} k+1 \\ 2 \end{array}\right)$; en effet, pour construire tous les $\mathcal{R} \in b$ tels que $\beta(\mathcal{R}) = \mathcal{R}$, il suffit de choisir une paire (non ordonnée) de blocs de \mathcal{R}, puis de les border chacun par x. Ainsi:

$$b = \sum_{\mathcal{R} \in c(E, k+1)} |\beta^{-1}(\mathcal{R})| \cdot \left(\begin{array}{c} k+1 \\ 2 \end{array}\right) \cdot c(n, k+1).$$

(IV) Calcul de d. Pour $A_0 \subset E$, $A_0 \neq \emptyset$, soit $d(A_0)$ l'ensemble des recouvrements $\mathcal{R} \in d$ tels que $A_0(\mathcal{R}) = A_0$ (et que $A_0 \in \mathcal{R}$). Définissons alors sur $d(A_0)$ la fonction δ_{A_0} à valeurs dans $c(E \setminus A_0, k-2)$ par: $\delta_{A_0}(\mathcal{R}) = \text{trace de } \mathcal{R} \text{ sur } E \setminus A_0 = \ldots$; δ_{A_0} est surjective, et pour tout $\mathcal{R} \in c(E \setminus A_0, k-2)$, on a $|\delta_{A_0}^{-1}(\mathcal{R})| = 1$ évidemment. Donc, en posant $u \equiv |A_0|$, $1 \equiv u \equiv n$, il vient:

$$|d(A_0)| = \sum_{\mathcal{R} \in c(E \setminus A_0, k-2)} |\delta_{A_0}^{-1}(\mathcal{R})| = c(n-u, k-2).$$

C'est-à-dire:

$$d = \sum_{A_0 \subset E} |d(A_0)| = \sum_{1 \equiv u \equiv n} \left(\begin{array}{c} n \\ u \end{array}\right) \cdot c(n-u, k-2).$$

(V) Calcul de e. Dans ce cas, $A_0(\mathcal{R}) \cap B_0(\mathcal{R}) = \emptyset$, puisque, s'il existait un élément y commun à $A_0(\mathcal{R})$ et $B_0(\mathcal{R})$, il appartiendrait à $A(\mathcal{R})$: il serait donc trois fois recouvert et \mathcal{R} ne serait plus un recouvrement. Pour $A_0 \subset E$, $A_0 \neq \emptyset$, soit $e(A_0)$ l'ensemble des recouvrements $\mathcal{R} \in e$ tels que $A_0(\mathcal{R}) = A_0$ (et que $A_0 \in \mathcal{R}$). Définissons alors sur $e(A_0)$ la fonction ε_{A_0} à valeurs dans $c(E \setminus A_0, k-1)$ par: $\varepsilon_{A_0}(\mathcal{R}) = \text{trace de } \mathcal{R} \text{ sur } E \setminus A_0 = \ldots$; ε_{A_0} est surjective, et pour tout $\mathcal{R} \in c(E \setminus A_0, k-1)$,

$$|e(A_0)| = \sum_{\mathcal{R} \in c(E \setminus A_0, k-1)} |\varepsilon_{A_0}^{-1}(\mathcal{R})| = (k-1) \cdot c(n-u, k-1),$$

c'est-à-dire:

$$|e| = \sum_{A_0 \subset c(E \setminus A_0, k-1)} |e(A_0)| = \sum_{1 \equiv u \equiv n} \sum_{|A_0| = u} |e(A_0)| = \sum_{1 \equiv u \equiv n} \left(\begin{array}{c} n \\ u \end{array}\right) \cdot (k-1) \cdot c(n-u, k-1).$$

(VI) Calcul de f. On a encore $A_0(\mathcal{R}) \cap B_0(\mathcal{R}) = \emptyset$. Pour $A_0 \subset E$, $B_0 \subset E$, $A_0 \neq \emptyset$, $B_0 \neq \emptyset$, $A_0 \cap B_0 = \emptyset$, la paire (A_0, B_0) n'étant pas ordonnée, soit $f(A_0, B_0)$ l'ensemble des $\mathcal{R} \in f$ tels que $A_0(\mathcal{R}) = A_0$ et $B_0(\mathcal{R}) = B_0$ (alors $A_0, B_0 \in \mathcal{R}$). Définissons sur $f(A_0, B_0)$ la fonction φ_{A_0, B_0} à valeurs dans $c(E \setminus (A_0 \cup B_0), k-3)$ par:

$$\varphi_{A_0, B_0}(\mathcal{R}) = \text{trace de } \mathcal{R} \text{ sur } E \setminus (A_0 \cup B_0) = \ldots$$

On voit aisément que $|\varphi_{A_0, B_0}^{-1}(\mathcal{R})| = 1$, donc que $|f(A_0, B_0)| = c(n-v, k-3)$ où l'on a posé: $v \equiv |A_0| + |B_0|$; il s'ensuit, après un calcul facile:

$$|f| = \sum_{A_0, B_0 \subset c(E \setminus A_0, k-3) \text{ non ordonnées; } A_0 \cap B_0 \neq \emptyset} \sum_{1 \equiv u \equiv n} \left(\begin{array}{c} n \\ v \end{array}\right) \cdot c(n-v, k-3)$$

(VII) Récapitulation. (7) entraîne:

$$c(n+1, k+1) = k \cdot c(n, k) + \frac{k(k+1)}{2} \cdot c(n, k+1) +$$

$$+ \sum_{1 \equiv u \equiv n} \left(\begin{array}{c} n \\ u \end{array}\right) \cdot (k-1) \cdot c(n-u, k-1) + c(n-u, k-2) +$$

$$+ \sum_{1 \equiv u \equiv n} (2^{n-1} - 1) \left(\begin{array}{c} n \\ v \end{array}\right) \cdot c(n-v, k-3),$$

ou encore, en réunissant les deux Σ en un seul:
et cherchons le nombre d'éléments de $\alpha^{-1}(\mathcal{R})$. Pour construire les $\mathcal{R} \in \alpha^{-1}(\mathcal{R})$ à partir de \mathcal{A}, il suffit de choisir un bloc $B \in \mathcal{R}$, puis de le border par x, c'est-à-dire de le remplacer par $B \cup \{x\}$; comme \mathcal{R} possède k blocs, il y a k choix possibles du bloc B; donc $\alpha^{-1}(\mathcal{R}) = k$ pour tout $\mathcal{R} \in c(E, k)$. Ainsi:

$$|a| = \sum_{\mathcal{R} \in c(E, k)} |\alpha^{-1}(\mathcal{R})| = k \cdot c(n, k).$$

(III) Calcul de β. Définissons sur b la fonction β à valeurs dans $c(E, k+1)$ par: $\beta(\mathcal{R}) = \text{trace de } \mathcal{R}$ sur $E = \{R \cap E | R \in \mathcal{R}\}$. β est surjective et, pour $\mathcal{R} \in c(E, k+1)$, on a $|\beta^{-1}(\mathcal{R})| = \binom{k+1}{2}$; en effet, pour construire tous les $\mathcal{R} \in b$ tels que $\beta(\mathcal{R}) = \mathcal{R}$, il suffit de choisir une paire (non ordonnée) de blocs de \mathcal{R}, puis de les border chacun par x. Ainsi:

$$b = \sum_{\mathcal{R} \in c(E, k+1)} |\beta^{-1}(\mathcal{R})| = \binom{k+1}{2} \cdot c(n, k+1).$$

(IV) Calcul de d. Pour $A_0 \subset E$, $A_0 \neq \emptyset$, soit $d(A_0)$ l'ensemble des recouvrements $\mathcal{R} \in c(E)$ tels que $A_0(\mathcal{R}) = A_0$ (et que $A_0 \in \mathcal{R}$). Définissons alors sur $d(A_0)$ la fonction δ_{A_0} à valeurs dans $c(E, A_0, k-2)$ par: $\delta_{A_0}(\mathcal{R}) = \text{trace de } \mathcal{R}$ sur $E \setminus A_0 = \ldots$; δ_{A_0} est surjective, et pour tout $\mathcal{R} \in c(E, A_0, k-2)$, on a $|\delta_{A_0}^{-1}(\mathcal{R})| = 1$ évidemment. Donc, en posant $u = |A_0|$, $1 \leq u \leq n$, il vient:

$$d(A_0) = \sum_{\mathcal{R} \in c(E, A_0, k-2)} |\delta_{A_0}^{-1}(\mathcal{R})| = c(n-u, k-2).$$

C'est-à-dire:

$$d = \sum_{A_0 \subset E, A_0 \neq \emptyset} d(A_0) = \sum_{1 \leq u \leq n} |A_0| \cdot c(n-u, k-2).$$

(V) Calcul de e. Dans ce cas, $A_0(\mathcal{R}) \cap B_0(\mathcal{R}) = \emptyset$, puisque, s'il existait un élément y commun à $A_0(\mathcal{R})$ et $B_0(\mathcal{R})$, il appartiendrait à $A_0(\mathcal{R})$; il serait donc trop recouvert et \mathcal{R} ne serait plus un recouvrement. Pour $A_0 \subset E$, $A_0 \neq \emptyset$, soit $e(A_0)$ l'ensemble des recouvrements \mathcal{R} tels que $A_0(\mathcal{R}) = A_0$ (et que $A_0 \in \mathcal{R}$). Définissons alors sur $e(A_0)$ la fonction e_A à valeurs dans $c(E \setminus A_0, k-1)$ par: $e_A(\mathcal{R}) = \text{trace de } \mathcal{R}$ sur $E \setminus A_0 = \ldots$; e_A est surjective, et pour tout $\mathcal{R} \in c(E \setminus A_0, k-1)$,

$$|e(A_0)| = \sum_{\mathcal{R} \in c(E \setminus A_0, k-1)} |e^{-1}_A(\mathcal{R})| = (k-1) \cdot c(n-u, k-1),$$

c'est-à-dire:

$$e = \sum_{A_0 \subset E \setminus \{x\}} |e(A_0)| = \sum_{1 \leq u \leq n} \left(\sum_{|A_0| = u} \binom{n}{u} \right) \cdot (k-1) \cdot c(n-u, k-1).$$

(VI) Calcul de f. On a encore $A_0(\mathcal{R}) \cap B_0(\mathcal{R}) = \emptyset$. Pour $A_0 \subset E$, $B_0 \subset E$, $A_0 \neq \emptyset$, $B_0 \neq \emptyset$, $A_0 \cap B_0 = \emptyset$, la paire (A_0, B_0) n'étant pas ordonnée, soit $f(A_0, B_0)$ l'ensemble des $\mathcal{R} \in \mathcal{F}$ tels que $A_0(\mathcal{R}) = A_0$ et $B_0(\mathcal{R}) = B_0$ (alors $A_0, B_0 \in \mathcal{R}$). Définissons sur $f(A_0, B_0)$ la fonction φ_{A_0, B_0} à valeurs dans $c(E \setminus (A_0 \cup B_0), k-3)$ par:

$$\varphi_{A_0, B_0}(\mathcal{R}) = \text{trace de } \mathcal{R}$$

sur $E \setminus (A_0 \cup B_0) = \ldots$

On voit aisément que $|\varphi_{A_0, B_0}^{-1}(\mathcal{R})| = 1$, donc que $|f(A_0, B_0)| = c(n-v, k-3)$ où l'on a posé: $v = |A_0| + |B_0|$, il s'ensuit, après un calcul facile:

$$f = \sum_{A_0, B_0 \subset E : (A_0, B_0) \text{ non ordonnée; } A_0 \cap B_0 = \emptyset} c(n-v, k-3) = \sum_{1 \leq u \leq n} \binom{n}{u} \cdot c(n-v, k-3).$$

(VII) Récapitulation. (7) entraîne

$$c(n+1, k+1) = kc(n, k) + \frac{k(k+1)}{2} \cdot c(n, k+1) +$$

$$+ \sum_{1 \leq u \leq n} \binom{n}{u} \left((k-1) \cdot c(n-u, k-1) + c(n-u, k-2)\right) +$$

$$+ \sum_{1 \leq u \leq n} \binom{n}{u} \cdot c(n-v, k-3),$$

ou encore, en réunissant les deux Σ en un seul:

$$c(n+1, k+1) = \sum_{u=1}^{n} \binom{n}{u} \cdot \left((k-1) \cdot c(n-u, k-1) + c(n-u, k-2) + c(n-v, k-3) \right).$$
PROPOSITION 4. Le nombre \(c(n, k) \) de \(k \)-birecouvrements de \(E, |E| = n \geq 1 \) satisfait la relation de récurrence suivante, où \(k \equiv 3 \):

\[
c(n+1, k+1) = kc(n, k) + \frac{k(k+1)}{2} \cdot c(n, k+1) + \sum_{0 \leq v \leq n-1} \binom{n}{v} [(k-1) \cdot c(v, k-1) + c(v, k-2) + (2^{n-v-1} - 1) \cdot c(v, k-3)].
\]

Observons enfin que la méthode employée permet aussi, de proche en proche, l'« numération » des systèmes \(\mathcal{R} \in c(E, k) \).

4. Valeurs de \(c(n, k) \)

Soit \(k(n) \) le plus grand entier \(k \) tel que \(c(n, k) \neq 0 \); montrons que \(k(n) = \left\lceil \frac{n}{3} \right\rceil \).\(\text{[2]} \) désigne le plus grand entier \(\leq z \). Cela revient à prouver que pour tout birecouverrement \(\mathcal{R} \) de \(E, |E| = n \), on a \(|\mathcal{R}| \leq \frac{n}{3} \), et qu'il existe un birecouverrement ayant \(\left\lceil \frac{n}{3} \right\rceil \) blocs. Pour cela, associons à tout \(\mathcal{R} \in c(E) \) et tout entier \(h \equiv 0 \), le système \(\mathcal{R}_h \):

\[
\mathcal{R}_h \equiv \{ R \in \mathcal{R}, |R| = h \}.
\]

Utilisant les deux égalités suivantes (la seconde provient de ce que chaque \(x \in E \) est deux fois recouvert par \(\mathcal{R} \)):

\[
|\mathcal{R}| = \sum_{h \geq 1} |\mathcal{R}_h|, \quad 2n = \sum_{R \in \mathcal{R}} |R|,
\]

il vient:

\[
2n = \sum_{R \in \mathcal{R}} |R| = \sum_{h \geq 1} \sum_{R \in \mathcal{R}_h} |R| \equiv \sum_{h \geq 1} |\mathcal{R}_h| + 2 \sum_{h \geq 2} |\mathcal{R}_h| = |\mathcal{R}_1| + 2(|\mathcal{R}| - |\mathcal{R}_1|) = 2|\mathcal{R}| - |\mathcal{R}_1|;
\]

donc, puisque \(|\mathcal{R}| \equiv n \):

\[
2|\mathcal{R}| \equiv 2n + |\mathcal{R}_1| \equiv 3n, \quad \text{q.c.d.}
\]

La valeur \(\left\lceil \frac{3n}{2} \right\rceil \) est atteinte par \(|\mathcal{R}| \); il suffit pour cela d'envisager, pour \(E = \{ x_1, x_2, \ldots, x_n \} \), le recouvrement \(\mathcal{R}_0 \) suivant, défini par ses blocs:

\[
\mathcal{R}_0 \equiv \begin{cases} \{ x_1 \}, \{ x_2 \}, \ldots, \{ x_n \} & \text{si } n \text{ est pair,} \\ \{ x_1, x_2 \}, \ldots, \{ x_{n-2}, x_{n-1}, x_n \} & \text{si } n \text{ est impair.} \end{cases}
\]

De ce résultat se déduit sans peine que \(c(n, k) \neq 0 \), vaut \(\left\lceil \frac{n}{3} \right\rceil \), où \([z] \) désigne le plus petit entier \(\equiv z \). Révélons les valeurs de \(c(n, k) \) et celles de \(c(n) = \sum_{k=1}^{\left\lceil \frac{n}{3} \right\rceil} c(n, k) \), \(2 \leq n \leq 7 \) (voir page 145).

Enfin, la formule (8) fournit facilement:

\[
c(n, 3) = (1/2)(3^{n-1} - 1); \quad c(n, 4) = (1/2)(3^{n-1} - 1)(2^{n-2} - 1); \quad c(2r, 3v) = (2v - 1)!
\]

(1) et (2) sont respectivement établis dans les théorèmes (11) et (12).

Soit \(P \) un point de \(D = \{ d \} \) de \(D

(9) et (10) sont respectivement établis dans les théorèmes (11) et (12).

Soit \(\mathcal{G} \) un ensemble de \(P \) qui fait de \(D

(11) et (12) sont respectivement établis dans les théorèmes (11) et (12).

Spéciallement, \(D = \{ d \} \) pour \(n \geq 1 \).
Proposition 4. Le nombre \(c(n, k) \) de \(k \)-birecovements de \(E \), \(|E| = n \geq 1 \), la relation de récurrence suivante, où \(k \geq 3 \):

\[
c(n+1, k+1) = k c(n, k) + \frac{k(k+1)}{2} \cdot c(n, k+1) + \sum_{r=3}^{k-1} \frac{(k-1)!}{r!} (c(r, k-1) + c(r, k-2) + 2^{n-r-1} - 1 \cdot c(r, k-3)).
\]

mons enfin que la méthode employée permet aussi, de proche en proche, la résolution des systèmes \(\mathcal{R} \in \mathcal{C}(E, k) \).

4. Valeurs de \(c(n, k) \)

On trouve \(c(n, k) \) le plus grand entier \(k \) tel que \(c(n, k) = 0 \); montrons que \(k(n) = \lfloor \frac{3 n}{2} \rfloor \), est le plus grand entier \(\leq n \). Celà revient à prouver que pour tout birecouvernement \(\mathcal{R} \) de \(E \), \(|E| = n \), on a \(|\mathcal{R}| \leq \lfloor \frac{3 n}{2} \rfloor \), et qu'il existe un birecovement \(\mathcal{R} \) de \(E \). Pour cela, associons à tout \(\mathcal{R} \in \mathcal{C}(E, k) \) et tout entier \(h \geq 0 \), le système \(\mathcal{R}_h \):

\[
\mathcal{R}_h = \{ R \in \mathcal{R} : |R| = h \}.
\]

et les deux égalités suivantes (la seconde provient de ce que chaque \(x \in E \) est recouvert par \(\mathcal{R} \)):

\[
|\mathcal{R}| = \sum_{k \leq 1} |\mathcal{R}_k|,
\]

\[
2n = \sum_{R \in \mathcal{R}} |R| = \sum_{k \geq 1} \sum_{R \in \mathcal{R}_k} |R| = \sum_{k \geq 1} h(\mathcal{R}_k) \equiv |\mathcal{R}_1| + 2 \sum_{k \geq 2} |\mathcal{R}_k| = |\mathcal{R}_1| + 2(|\mathcal{R}| - |\mathcal{R}_1|) = 2|\mathcal{R}| - |\mathcal{R}_1|;
\]

puisque \(|\mathcal{R}_1| = n \):

\[
2|\mathcal{R}| = 2n + |\mathcal{R}_1| = 3n,
\]

et donc:

\[
|\mathcal{R}| = \lfloor \frac{3 n}{2} \rfloor.
\]

C'est atteint par \(\mathcal{R} \) ; il suffit pour cela d'envisager, pour \(\{ x_1, x_2, \ldots, x_n \} \), le recouvrement \(\mathcal{R}_0 \) suivant, défini par ses blocs:

\[
\mathcal{R}_0 = \{ \{x_1, x_2, \ldots, x_n\} ; \{x_1, x_2, x_3, x_4, \ldots, x_{n-1}, x_n\} \text{ si } n \text{ est pair},
\]

\[
\{d^2 : \{x_1, x_2, \ldots, x_{n-4}, x_{n-3}, x_{n-2}, x_{n-1}, x_n\} \text{ si } n \text{ est impair} \}.
\]

Résultat se déduit sans peine que \(k(n) \), plus petit entier tel que \(c(n, k) = 0 \), vaut \(\lfloor \frac{3 n}{2} \rfloor \). Révélons les valeurs de \(c(n, k) \) et de \(c(n, 3) = (1/2)(3^{n-1} - 1) \); \(c(n, 4) = (1/2)(3^{n-1} - 1)(2^{n-2} - 1) \); \(c(2n, 3i) = (2i-1)!! \).

5. Calcul des nombres \(v(n, k) \) de \(k \)-birecovements de \(E \), \(|E| = n \), par le théorème de Pólya—De Bruijn

(1) et (8) permettent le calcul de proche en proche des \(v(n, k) \) à partir des \(c(n, k) \). Nous allons cependant établir une formule donnant \(v(n, k) \) sous forme compacte ; nous aurons par là un procédé de vérification des valeurs de \(c(n, k) \) déjà trouvées ; de plus cette formule sera utilisée ultérieurement pour l'énumération de \(c(n) ; \) enfin, elle fournira parmi tant d'autres un exemple d'application du grand théorème de Pólya—De Bruijn, que nous commençons par rappeler ([4] p. 162 et [5]) :

Théorème de Pólya—De Bruijn. Soient deux ensembles finis \(D \) et \(R ; G \) (resp. \(H \)) un groupe de permutations de \(D \) (resp. de \(R) ; \mathcal{F} \) l'ensemble des applications de \(D \) dans \(R ; \mathcal{F} \) l'ensemble quotient de \(\mathcal{F} \) par la relation d'équivalence:

\[
f_1 \sim f_2 \Leftrightarrow \exists g \in G, \exists h \in H \text{ telles que } f_1 \circ g = h \circ f_2.
\]

Soit \(W \) une application qui à toute \(f \in \mathcal{F} \) associe un entier \(W(f) \) — le poids de \(f \) — et telle que :

\[
f_1 \sim f_2 \Rightarrow W(f_1) = W(f_2),
\]

ce qui légitime la définition du poids \(W(F) \) d'une classe d'équivalence (ou modèle) \(F \in \mathcal{F} \) par :

\[
W(F) = W(f), \quad f \in F.
\]

Soit aussi \(i(g, h) \) la somme des poids des fonctions \(f \in \mathcal{F} \) telles que \(fg = hf \), ce que l'on note:

\[
i(g, h) = \sum_{f \in \mathcal{F}} W(f).
\]

De toutes ces hypothèses s'ensuit que l'„inventaire“ des modèles vaut :

\[
I(\mathcal{F}) = \sum_{F \in \mathcal{F}} W(F) = \frac{1}{|G| \cdot |H|} \sum_{g \in G, h \in H} i(g, h).
\]

Spécialisons ce théorème de De Bruijn au problème qui nous préoccupe. Soit \(D = \{ a_1, a_1', a_2, a_2', \ldots, a_n, a_n' \} \) un ensemble à \(2n \) éléments associés 2 à 2, \(a_i \) et
a_i' étant dits homologues $(1 \leq i \leq n)$; soit G le groupe des permutations de D engendré par les n transpositions $(a_i a_i')$, $1 \leq i \leq n$; donc $|G| = 2^n$; soit $R = \{1, 2, \ldots, k\}$; soit enfin H le groupe symétrique de R; donc $|H| = k!$. Il apparait que la donnée de $F \in \mathcal{F}$ équivalant à la donnée d'un agrégat de $E = \{a_1, a_2, \ldots, a_n\}$ ayant au plus k blocs, et au plus bicourent, en ce sens que chaque a_i, $1 \leq i \leq n$, appartient à 1 ou 2 blocs; en effet, la donnée de $F \in \mathcal{F}$ définit un ensemble ordonné de blocs de D: $f^{-1}(1), f^{-1}(2), \ldots, f^{-1}(k)$ en nombre $\leq k$, puisque certains $f^{-1}(i)$ peuvent être vides; le groupe G identifie a_1 et a'_1, a_2 et a'_2, etc., et transforme les blocs précédents en blocs de E, et le groupe H efface le numérotation de ces blocs. Introduisons la condition:

\[(12) \quad f(a_i) \neq f(a'_i), \quad 1 \leq i \leq n,\]

et définissons le poids $W(f)$ comme étant égal à 1 si f satisfait cette condition (12) et à 0 dans le cas contraire. (On voit sans trop d'effort que W satisferait la condition (9)). Alors l'inventaire des modèles $I(\mathcal{F}) = \sum_{K} W(F)$ vaut le nombre des birevêtements de E, ayant au plus k blocs, puisque tout agrégat défini par F et qui ne recouvre pas deux fois chaque $a_i \in E$ a une participation nulle dans l'inventaire: c'est le méri de la définition de W. En d'autres termes, posant:

\[\tilde{v}(n, k) = v(n, 1) + v(n, 2) + \ldots + v(n, k),\]
on a, d'après le théorème de Pólya—De Bruijn:

\[(13) \quad I(\mathcal{F}) = \frac{1}{|G| \cdot |H|} \sum_{g \in G, h \in H} i(g, h) = \tilde{v}(n, k).\]

Passons maintenant au calcul effectif de $i(g, h)$ pour $g \in G$, $h \in H$. Supposons que g est du type $(1^{2^t} 2^{s} \ldots, 1^{c_1} 2^{c_2} 3^{c_3} \ldots)\ldots}\]
Ainsi, d'après (13) et [3], p. 67;

\[
\hat{v}(n, k) = \frac{1}{2^n \cdot k!} \sum_{g \in G} \sum_{h \in H} \left(\sum_{i=1}^{n} \binom{n}{i} (c_1(c_1 - 1))^i (2c_2)^{n-i} \right)
\]

\[= \frac{1}{2^n \cdot k!} \sum_{g \in G} \sum_{h \in H} \binom{n}{k} (c_1(c_1 - 1))^k (2c_2)^n
\]

\[= \frac{1}{2^n \cdot k!} \sum_{g \in G} \sum_{h \in H} \binom{n}{k} x_v \binom{k}{c_1(c_1 - 1)^2} \binom{(2c_2)^n}{c_1 c_2!}
\]

où l'on a posé

\[x_v = \sum_{3c_3 + 4c_4 + \ldots} \binom{m}{3} c_3 (2c_2)^n
\]

\[x_v \] est précisément égal au nombre de permutations sans 1-cycle ni 2-cycle d'un ensemble à \(v\) éléments. En utilisant [3], p. 70, on trouve facilement que

\[(14) \quad \sum_{v \in 0} x_v t^v = (1 - t)^{-1} \exp \left(-\frac{t^2}{2} \right)
\]

d'où une formule compacte pour \(\hat{v}(n, k)\):

\[(15) \quad \hat{v}(n, k) = \frac{1}{2^n} \sum_{v \in 0} \binom{k}{c_1(c_1 - 1)^2} \binom{(2c_2)^n}{c_1 c_2!} x_v
\]

Les valeurs de \(v(n, k)\) et celles de \(v(n) = \sum_{k=0}^n v(n, k)\), pour \(n \equiv 0\) et \(n \equiv 7\):
6. Estimations de $c(n)$ et $v(n)$

Il est clair que:

$$
(16) \quad c(n, k) \leq r(n, k); \quad c(n) \leq r(n) \quad (n, k \geq 0).
$$

Etablisons d'abord une minoration de $c(n)$. La formule (8) montre que:

$$
\frac{k(k-1)}{2} c(n-1, k) = \frac{k(k-1)}{2} c(n, k), \quad n \geq 2, \quad n \equiv n(k), \quad k \equiv 3,
$$

où $n(k)$ désigne le plus petit entier n tel que $c(n, k) = 0$, donc $n \equiv 1$: d'après le paragraphe 4, $n(k) = \left[\frac{k}{3} \right]$.

Multiplier membre à membre les $(n-n(k))$ inégalités ci-dessus; il vient

$$
c(n, k) = \sum_{3 \leq k \leq \frac{3n}{2}} c(n, k) \geq \gamma(n, k),
$$

$$
c(n) = \sum_{3 \geq k \geq \frac{3n}{2}} c(n, k) \geq \gamma(n, k),
$$

où $k_n = \left[\frac{3n}{2 \log n} \right]$ est proche de l'abscisse du maximum de la fonction $\gamma(n, t)$ de la variable t. On trouve, après un calcul facile que

$$
\log \gamma(n, k_n) = (2n \log n)(1 + o[1]),
$$

donc

$$
(17) \quad \log c(n) \geq (2n \log n)(1 + o[1]) \quad (n \to \infty).
$$

Etablisons maintenant une majoration de $r(n)$. Tout birevêtement ayant au plus $2n$ blocs, on aura

$$
\varepsilon(n) = \varepsilon(n, 2n),
$$

donc, d'après (15):

$$
v(n) = \frac{1}{2^n} \sum_{0 \leq v \leq 2^n} \frac{x_v}{v!} \sum_{c_1, c_2 = v} (c_1(c_1 - 1) + 2c_2)^n.
$$

Posons

$$
\mu = 2n - v \quad \text{et} \quad h_{\mu} = \sum_{c_1, c_2 = \mu} \frac{1}{2^{c_1 c_2}} c_1! c_2!.
$$

Un calcul simple prouve que

$$
(15') \quad \max_{c_1, c_2 = \mu} \{c_1(c_1 - 1) + 2c_2\} \leq \mu^2; \quad (2') \quad \sum_{\mu \geq 0} h_{\mu} \frac{t^\mu}{\mu!} = \exp \left(t + \frac{t^2}{2} \right),
$$

et donc

$$
v(n) = \frac{1}{2^n} \sum_{\mu + v = 2n} x_v h_{\mu} \frac{t^\mu}{\mu!} \leq \frac{(2n)^{2n}}{2^n} \sum_{\mu + v = 2n} x_v h_{\mu} \frac{t^\mu}{\mu!}.
$$

Le dernier Σ est égal (voir (14), (18)) au coefficient de t^{2n} dans $(1 - t)^{-1}$, soit 1; donc

$$
\varepsilon(n) \equiv 2^n n^{2n};
$$

d'où résulte, d'après (16):

$$
(19) \quad \log c(n) \leq \log \varepsilon(n) \leq (2n \log n)(1 + o[1]) \quad (n \to \infty).
$$

(17) et (19) impliquent en définitive:

Proposition 6. Le nombre $c(n)$ de birevêtements de E et le nombre $v(n)$ de birevêtements de E, $|E| = n$, sont tels que:

$$
(20) \quad \log v(n) \sim \log \varepsilon(n) \sim 2n \log n \quad (n \to \infty).
$$

7. Fonctions génératrices de $c(n)$ et $v(n)$

(I) Recouvrement $q(\mathcal{F})$ associé à un birevêtement \mathcal{F}; les nombres $c(n, k, a)$.

Soit \mathcal{F} un birevêtement de E, $|E| = n$, ayant k blocs ($\mathcal{F} \in \mathcal{C}(E, k)$) que nous numérotions de 1 à k; \mathcal{F} est ainsi transformé en un birevêtement ordonné que nous désignons par \mathcal{F}^*:

$$
\mathcal{F}^* = \{S_1, S_2, \ldots, S_k\}.
$$

Associons à \mathcal{F} la partition $\pi(\mathcal{F})$ de E dont les blocs sont les classes de l'équivalence $a_{\mathcal{F}}$ sur E, définie pour $x, y \in E$ par:

$$
x \equiv x' \iff x' \in a_{\mathcal{F}}(x) \equiv \left(x \in \bigcap_{M \in \mathcal{F}^*} M \right) \bigcap \left(x \in \bigcap_{M \in \mathcal{F}^*} (E\setminus M) \right).
$$

Appelons *atome* chaque bloc de $\pi(\mathcal{F})$ et supposons qu'il y en ait le nombre a:

$$
1 \equiv a = |\pi(\mathcal{F})| \equiv n.
$$

Soit aussi K l'ensemble des k premiers nombres entiers:

$$
K = \{1, 2, \ldots, k\}.
$$

Nous pouvons maintenant associer au système ordonné \mathcal{F}^* de E un certain système (non ordonné) $q(\mathcal{F})$ de K, constitué uniquement des paires (i.e. blocs à 2 éléments) définies ainsi:

$i \text{ et } j$ appartiennent à une paire de $q(\mathcal{F})$ ($i \neq j$) si $S_i \cap S_j \neq \emptyset$.

Ce nouveau système $q(\mathcal{F})$ de K a les 3 propriétés suivantes:

(I) $q(\mathcal{F})$ est un recouvrement en paires de K; ceci résulte de ce que \mathcal{F} est un birevêtement de E.

(II) Il y a correspondance biunivoque entre les paires qui constituent $q(\mathcal{F})$ et les atomes de $\pi(\mathcal{F})$; donc $|q(\mathcal{F})| = |\pi(\mathcal{F})| = a$.

(III) Aucune paire n'est isolée en ce sens que toute paire en rencontre au moins une autre; ceci résulte de ce que tous les blocs du birevêtement \mathcal{F} sont distincts.
Le dernier Σ est égal (voir (14), (18)) au coefficient de t^{2n} dans $(1 - t)^{-1}$, soit 1; donc

$$i(n) \equiv 2^n n^{2n};$$

d'où résulte, d'après (16):

$$\log c(n) \leq \log v(n) \leq (2n \log n)(1 + o [1]) \quad (n \to \infty).$$

(17) et (19) impliquent en définitive:

Proposition 6. Le nombre $c(n)$ de birecouvrements de E et le nombre $v(n)$ de birecouvrements de E, $|E| = n$, sont tels que:

$$\log \gamma(n) - \log v(n) \sim 2n \log n \quad (n \to \infty).$$

7. Fonctions génératrices des $c(n)$ et $v(n)$

(1) Recouvrement $\varphi(S)$ associé à un birecouvrement S; les nombres $c(n, k, a)$. Soit φ un birecouvrement de E, $|E| = n$, ayant k blocs ($\varphi \in c(E, k)$) que nous numéronnons de 1 à k; φ est ainsi transformé en un birecouvrement ordonné que nous désignons par φ':

$$\varphi' = \{S_1, S_2, \ldots, S_k\}.$$

Associons à φ la partition $\pi(\varphi)$ de E dont les blocs sont les classes de l'équivalence φ sur E, définie pour $x, x' \in E$ par:

$$x \equiv x' \iff x' \in \varphi(x) \equiv \left(\bigcap_{x \in \varphi(x)} M\right) \cap \left(\bigcap_{x \notin \varphi(x)} (E \setminus N)\right).$$

Appelons atome chaque bloc de $\pi(\varphi)$ et supposons qu'il y en ait le nombre a:

$$1 \equiv a = |\pi(\varphi)| \equiv n.$$

Soit aussi K l'ensemble des k premiers nombres entiers:

$$K = \{1, 2, \ldots, k\}.$$

Nous pouvons maintenant associer au système ordonné φ' de E un certain système (non ordonné) $\varphi(\varphi')$ de K, constitué uniquement des paires (i.e. blocs à 2 éléments) définies ainsi:

$$i \text{ et } j \text{ appartiennent à une paire de } \varphi(\varphi') (i \neq j) \iff S_i \cap S_j \neq 0.$$

Ce nouveau système $\varphi(\varphi')$ de K a les 3 propriétés suivantes:

(1) $\varphi(\varphi')$ est un recouvrement en paires de K: ceci résulte de ce que φ' est un birecouvrement de E.

(2) Il y a correspondance biunivoque entre les paires qui constituent $\varphi(\varphi')$ et les atomes de $\pi(\varphi')$; donc $|\varphi(\varphi')| = |\pi(\varphi')| = a$.

(3) Aucune paire n'est isolée en ce sens que toute paire en rencontre au moins une autre: ceci résulte de ce que tous les blocs du birecouvrement φ' sont distincts.
Observons d'ailleurs que $a(S)$ pourrait être considérée comme un graphe de K.
Soit $r(K, a)$ l'ensemble des recouvrements \mathcal{R} de K ayant les 3 propriétés ci-dessous, et soit $r(k, a) = r(K, a)$. Tout $\mathcal{R} \in r(K, a)$ est l'image d'un nombre de k-birecouvrements $\mathcal{R} \in \mathcal{c}(E, k)$ égal à:

$$c(n, k, a) \equiv \frac{1}{k^k} \cdot S(n, a) \cdot r(k, a) \cdot a!;$$

en effet, il y a $S(n, a)$ choix possibles pour la partition $\pi(\mathcal{R})$, puis $r(k, a)$ choix pour le recouvrement $\mathcal{R} = (\mathcal{R}) \in r(K, a)$ de K, et $a!$ choix pour la bijection entre $\pi(\mathcal{R})$ et $g(\mathcal{R})$; enfin le terme $1/k!$ provient de l'effacement du numérotation des blocs de \mathcal{R}. En définitive, les choix précédents étant indépendants, le nombre $c(n, k, a)$ des k-birecouvrements de E, ayant a atomes, $|E| = n$, vaut bien la valeur indiquée en (21). En faisant une convention analogue à celle du paragraphe 2, il en résulte que:

$$c(n, k) = \sum_{a \geq 0} c(n, k, a) = \sum_{a \geq 0} \frac{a!}{k!} S(n, a) \cdot r(k, a)$$

(II) Calcul de $r(k, a)$. Désignons par $\mathcal{R}'(K, a)$ l'ensemble des recouvrements de K avec a paires non nécessairement isolées, et posons $r'(k, a) = \mathcal{R}'(K, a)$, $|K| = k$. Ce nombre $r'(k, a)$ se calcule facilement par la méthode que nous avons donnée en [6]; on trouve:

$$r'(k, a) = \sum_{0 \leq s} (-1)^{s+1} \binom{s}{2} \binom{k}{s}, \quad k, a \geq 0.$$

(22)

Dans ces conditions, pour $\mathcal{R} \in r'(K, a)$, posons $P = \bigcup M$, $N = \bigcup N$, aucune des paires N n'étant isolées, $q \equiv |Q|$. Un calcul facile prouve que:

$$r'(k, a) = \sum_{2p+q+k \atop p+r+s=0} \frac{k!}{2^p \cdot p! \cdot q!} r'(q, r), \quad k, a \geq 0$$

où les (q, r) ont été définis dans le paragraphe (7, 1).

Inversant cette formule par les techniques habituelles de fonction génératrice, et compte tenu de (22), il vient:

$$r(k, a) = \sum_{2p+q+k \atop p+r+s=0} (-1)^s \cdot \frac{k!}{2^p \cdot p! \cdot q!} r'(q, r) =$$

$$= k! \cdot \sum_{2p+q+k \atop p+r+s=0} \frac{(-1)^{p+q+s}}{2^p \cdot p! \cdot q!} \cdot \binom{s}{2} \cdot \binom{k}{s}, \quad k, a \geq 0.$$

(23)

(21) et (23) impliquent finalement:

$$c(n, k, a) = \sum_{2p+q+k \atop p+r+s=0} \frac{a!}{k!} S(n, a) \cdot \frac{(-1)^{p+q+s}}{2^p \cdot p! \cdot q!} \cdot \binom{s}{2} \cdot \binom{k}{s} \cdot \binom{r}{2} \cdot \frac{z^n}{n!}, \quad n, k, a \geq 0.$$

(24)

(Ill) Valeur de la fonction génératrice $\Gamma(x, y, z)$ des $c(n, k, a)$. Posons

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} c(n, k, a) \cdot x^n \cdot y^k \cdot \frac{z^n}{n!}.$$

(25)

On a successivement, d'après (24), et en prenant pour nouvelle variable de sommation $t = q - s, p, r, s, t$, auquel cas $a = p + r, q = s + t, k = 2p + s + t$:

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} a! S(n, a) \cdot \frac{(-1)^{p+q+s}}{2^p \cdot p! \cdot q!} \cdot \binom{s}{2} \cdot \binom{k}{s} \cdot \binom{r}{2} \cdot \frac{x^n \cdot y^k \cdot z^n}{n!} =$$

$$= \sum_{p, r, s, t \geq 0} \frac{(p+r)!}{(2p+q+k)!} S(n, p+r) \cdot \frac{(-1)^{p+r+s}}{2^p \cdot p! \cdot q!} \cdot \binom{s}{2} \cdot \binom{r}{2} \cdot \frac{x^{p+r} \cdot y^s \cdot z^n}{n!} =$$

$$= e^{-\gamma} \sum_{p, r, s, t \geq 0} \frac{1}{2^p \cdot p! \cdot q!} \frac{(-1)^p}{r} \frac{x^{p+r} \cdot y^s \cdot z^n}{n!}.$$

Le dernier Σ vaut, d'après (4), $(e^z - 1)^{p+r}$, d'où

$$\Gamma(x, y, z) = e^{-\gamma} \sum_{p, r, s, t \geq 0} \frac{1}{2^p \cdot p! \cdot q!} \cdot \frac{1}{r} \cdot \frac{1}{s} \frac{\{x(e^z - 1)\}' \cdot y^s}{r} \cdot \frac{y^z}{n!}.$$

Donc formellement:

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} c(n, k, a) \cdot x^n \cdot y^k \cdot \frac{z^n}{n!} =$$

$$= \exp \left[-\frac{y^z}{2} \cdot (e^z - 1)\right] \sum_{s \geq 0} \frac{y^s}{s!} \left\{1 + x(e^z - 1)^{s+1}\right\}.$$

(26)
Observons d'ailleurs que $a(S)$ pourrait être considérée comme un graphe de K. Soit $r(K, a)$ l'ensemble des recouvrements \mathcal{R} de K ayant les 3 propriétés ci-dessus, et soit $r(k, a) = |r(K, a)|$. Tout $R \in r(K, a)$ est l'image d'un nombre de k-bircouvrants $\mathcal{S} \in c(E, k)$ égal à:

$$c(n, k, a) \equiv \frac{1}{k!} \cdot S(n, a) \cdot r(k, a) \cdot a!$$

(21)

en effet, il y a $S(n, a)$ choix possibles pour la partition $\pi(\mathcal{S})$, puis $r(k, a)$ choix pour le recouvrement $\mathcal{R} = \{\pi(\mathcal{S})\} \in r(K, a)$ de K, et $a!$ choix pour la bijection entre $\pi(\mathcal{S})$ et $g(\mathcal{S})$; enfin le terme $1/k!$ provient de l'effacement du numérotage des blocs de \mathcal{S}. En définitive, les choix précédents étant indépendants, le nombre $c(n, k, a)$ des k-bircouvrants de E, ayant a atomes, $|E| = n$, vaut bien la valeur indiquée en (21). En faisant une convention analogue à celle du paragraphe 2, il en résulte que:

$$c(n, k) = \sum_{a \geq 0} c(n, k, a) = \sum_{a \geq 0} a! \cdot S(n, a) \cdot r(k, a)$$

(II) Calcul de $r(k, a)$. Désignons par $r'(K, a)$ l'ensemble des recouvrements de K avec a paires non nécessairement isolées, et posons $r(k, a) = r'(K, a)$, $|K| = k$. Ce nombre $r(k, a)$ se calcule facilement par la méthode que nous avons donnée en [6]; on trouve:

$$r'(k, a) = \sum_{\binom{2p+q+k}{p+r+s}} (-1)^{k-s} \cdot \binom{s}{2} \cdot \binom{k}{r}, \quad k, a \geq 0.$$

(22)

Dans ces conditions, pour $A' \in r'(K, a)$, posons $P = \bigcup_{M \in A'} M$, les paires M étant toutes isolées, $p \equiv |P|$, et $Q = \bigcup_{N \in A'} N$, aucune des paires N n'étant isolées, $q \equiv |Q|$. Un calcul facile prouve que:

$$r'(k, a) = \sum_{\binom{2p+q}{p+r}} \frac{k!}{2^p \cdot p! \cdot q!} \cdot r(q, r), \quad k, a \geq 0$$

où les $(r(q, r)$ ont été définis dans le paragraphe (7. (1)).

Inversant cette formule par les techniques habituelles de fonction génératrice, et compte tenu de (22), on vient:

$$r(k, a) = \sum_{\binom{2p+q+k}{p+r+s}} (-1)^{p-s} \cdot \frac{k!}{2^p \cdot p! \cdot q!} \cdot r'(q, r) =$$

$$= k! \cdot \sum_{\binom{2p+q+k}{p+r+s}} (-1)^{p-s} \cdot \binom{s}{2} \cdot \binom{k}{r}, \quad k, a \geq 0.$$

(23)

(21) et (23) impliquent finalement:

$$c(n, k, a) = \sum_{\binom{2p+q+k}{p+r+s}} a! \cdot S(n, a) \cdot \binom{1}{2} \cdot \binom{q}{r} \cdot \binom{\frac{s}{2}}{r}, \quad n, k, a \geq 0.$$

(24)

(III) Valeur de la fonction génératrice $\Gamma(x, y, z)$ des $c(n, k, a)$. Posons

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} c(n, k, a) \cdot x^a \cdot y^k \cdot z^n \cdot \frac{n!}{n!}.$$

(25)

On a successivement, d'après (24), et en prenant pour nouvelle variable de sommation $t = \gamma - s, p, r, s, n$, auquel cas $a = p + r, q = s + t, k = 2p + s + t)$:

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} a! \cdot S(n, a) \cdot \binom{(1)^{p+q+s}}{2^p \cdot p! \cdot q!} \cdot \binom{\frac{s}{2}}{r} \cdot x^p \cdot y^s \cdot z^n \cdot \frac{n!}{n!} =$$

$$= \sum_{p, r, s, \gamma, n \geq 0} (p+r)! \cdot S(n, p+r) \cdot \binom{(1)^{p+s}}{2^p \cdot p! \cdot s!} \cdot \binom{\frac{s}{2}}{r} \cdot x^p \cdot y^s \cdot z^n \cdot \frac{n!}{n!} =$$

$$= e^{-r} \cdot \sum_{p, r, s \geq 0} \binom{(1)^{p+s}}{2^p \cdot p! \cdot s!} \cdot \binom{\frac{s}{2}}{r} \cdot \sum_{\gamma \geq 0} (p+r) \cdot S(n, p+r) \cdot \frac{n!}{n!}.$$

(26)

Le dernier Σ vaut, d'après (4), $(e^z - 1)^{p+r}$, d'où

$$\Gamma(x, y, z) = e^{-r} \cdot \sum_{p, r, s \geq 0} \frac{1}{p! \cdot s!} \cdot \binom{\frac{s}{2}}{r} \cdot \sum_{\gamma \geq 0} \frac{y^s}{s!} \cdot \binom{\frac{s}{2}}{r} \cdot \left(x(e^z - 1) \right)^r \cdot y^s =$$

$$= e^{-r} \cdot \exp \left(\frac{y^2}{2} (e^z - 1) \right) \cdot \sum_{s \geq 0} \frac{y^s}{s!} \cdot \binom{\frac{s}{2}}{r} \cdot \left(x(e^z - 1) \right)^r.$$

Donc formellement:

$$\Gamma(x, y, z) = \sum_{n, k, a \geq 0} c(n, k, a) \cdot x^a \cdot y^k \cdot z^n =$$

$$= \exp \left(\frac{y^2}{2} (e^z - 1) \right) \cdot \sum_{s \geq 0} \frac{y^s}{s!} \cdot \left(1 + x(e^z - 1) \right)^{s-1}.$$

(26)
(IV) Valeur des fonctions génératrices des \(c(n, k), v(n, k), c(n), v(n) \). Compte tenu de ce que \(c(n, k) = \sum_{a \geq 0} c(n, k, a) \), il vient, d’après (3), (5) et (25):

\[
C(y, z) = \sum_{n, k \geq 0} c(n, k) \cdot y^k z^n n! = \sum_{n, k, a > 0} c(n, k, a) \cdot y^k z^n n! = \Gamma(1, y, z)
\]

\[
V(y, z) = \sum_{n, k \geq 0} v(n, k) \cdot y^k z^n n! = \exp \{ y^2 (e^z - 1) \} \cdot \Gamma(1, y, z)
\]

Introduisons les fonctions génératrices \(\mathcal{G}(z) \) et \(\mathcal{V}(z) \) des \(c(n) \) et \(v(n) \):

\[
\mathcal{G}(z) = \sum_{n \geq 0} c(n) \cdot z^n n! ; \quad \mathcal{V}(z) = \sum_{n \geq 0} v(n) \cdot z^n n! ;
\]

Compte tenu de \(c(n) = \sum_{k \geq 0} c(n, k) \) et de \(v(n) = \sum_{k \geq 0} v(n, k) \), il vient:

\[
\mathcal{G}(z) = \sum_{n, k \geq 0} c(n, k) \cdot z^n n! = C(1, z) = \Gamma(1, 1, z)
\]

\[
\mathcal{V}(z) = \sum_{n, k \geq 0} v(n, k) \cdot z^n n! = V(1, z) = \exp (e^z - 1) \cdot \Gamma(1, 1, z) = \exp (e^z - 1) \cdot \mathcal{G}(z)
\]

Donc, par utilisation de (26):

Proposition 7. Les fonctions \(C(y, z), V(y, z), \mathcal{G}(z), \mathcal{V}(z) \), génératrices respectivement des nombres \(c(n, k), v(n, k), c(n), v(n) \), satisfont les identités formelles suivantes:

\[
C(y, z) = \sum_{n, k \geq 0} c(n, k) \cdot y^k z^n n! = \exp \left\{ - \frac{y^2}{2} (e^z - 1) \right\} \sum_{s \geq 0} \frac{y^s}{s!} \cdot \exp \left\{ \frac{s(s - 1)}{2} z \right\}
\]

\[
V(y, z) = \sum_{n, k \geq 0} v(n, k) \cdot y^k z^n n! = \exp \left\{ - \frac{y^2}{2} (e^z - 1) \right\} \sum_{s \geq 0} \frac{y^s}{s!} \cdot \exp \left\{ \frac{s(s - 1)}{2} z \right\}
\]

\[
\mathcal{G}(z) = \sum_{n \geq 0} c(n) \cdot z^n n! = \exp \left\{ - \frac{1}{2} (e^z - 1) \right\} \sum_{s \geq 0} \frac{1}{s!} \cdot \exp \left\{ \frac{s(s - 1)}{2} z \right\}
\]

\[
\mathcal{V}(z) = \sum_{n \geq 0} v(n) \cdot z^n n! = \exp \left\{ - \frac{1}{2} (e^z - 1) \right\} \sum_{s \geq 0} \frac{1}{s!} \cdot \exp \left\{ \frac{s(s - 1)}{2} z \right\}
\]

BIBLIOGRAPHIE

Faculté des Sciences d’Orsay, Département des Mathématiques, France.

(Reçu le 10 février 1967.)

Studia Scientiarum Mathematicarum Hungarica 1 (1966)