login
A020535
a(n) = 9th Fibonacci polynomial evaluated at 2^n.
1
34, 985, 98209, 18674305, 4413393409, 1107043559425, 281956264747009, 72088384390201345, 18448714462971691009, 4722492584690006360065, 1208933890081654107537409, 309485526330443015424835585, 79228195570833939805878878209, 20282411719271922303543388667905
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (341,-23188,371008,-1396736,1048576).
FORMULA
G.f.: -(4771840*x^4-4589056*x^3+550716*x^2-10609*x+34) / ((x-1)*(4*x-1)*(16*x-1)*(64*x-1)*(256*x-1)). - Colin Barker, May 03 2015
MAPLE
with(combinat, fibonacci):seq(fibonacci(9, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[9, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(PARI) Vec(-(4771840*x^4-4589056*x^3+550716*x^2-10609*x+34) / ((x-1)*(4*x-1)*(16*x-1)*(64*x-1)*(256*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A244654 A214169 A212787 * A134500 A098607 A075292
KEYWORD
nonn,easy
AUTHOR
STATUS
approved