login
A020533
a(n) = 7th Fibonacci polynomial evaluated at 2^n.
1
13, 169, 5473, 283009, 17106433, 1078990849, 68803387393, 4399388786689, 281496451940353, 18014742108438529, 1152927002171277313, 73787064255793594369, 4722367890244629430273, 302231477421655833182209, 19342813474122038595551233, 1237940045049987804375810049
OFFSET
0,1
FORMULA
a(n) = 1+3*2^(1+2*n)+5*16^n+64^n. - Colin Barker, May 03 2015
G.f.: -(11584*x^3-9672*x^2+936*x-13) / ((x-1)*(4*x-1)*(16*x-1)*(64*x-1)). - Colin Barker, May 03 2015
MAPLE
with(combinat, fibonacci):seq(fibonacci(7, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[7, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(PARI) Vec(-(11584*x^3-9672*x^2+936*x-13)/((x-1)*(4*x-1)*(16*x-1)*(64*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A001022 A195945 A228389 * A176596 A176023 A067220
KEYWORD
nonn,easy
AUTHOR
STATUS
approved