login
A020536
a(n) = 10th Fibonacci polynomial evaluated at 2^n.
1
55, 2378, 416020, 151693352, 70889062480, 35459955294368, 18049605435392320, 9227876358078595712, 4722942966712028366080, 2417925426944427685841408, 1237949484041989933708088320, 633826509040690920286723254272, 324518708400955848808661516308480
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (682,-92752,2968064,-22347776,33554432).
FORMULA
G.f.: -(191954944*x^4-74711552*x^3+3895584*x^2-35132*x+55) / ((2*x-1)*(8*x-1)*(32*x-1)*(128*x-1)*(512*x-1)). - Colin Barker, May 03 2015
MAPLE
with(combinat, fibonacci):seq(fibonacci(10, 2^i), i=0..24);
MATHEMATICA
Table[Fibonacci[10, 2^i], {i, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
PROG
(PARI) Vec(-(191954944*x^4-74711552*x^3+3895584*x^2-35132*x+55) / ((2*x-1)*(8*x-1)*(32*x-1)*(128*x-1)*(512*x-1)) + O(x^100)) \\ Colin Barker, May 03 2015
CROSSREFS
Sequence in context: A053113 A012048 A215860 * A212788 A131557 A231853
KEYWORD
nonn,easy
AUTHOR
STATUS
approved