login
A017745
Binomial coefficients C(n,81).
2
1, 82, 3403, 95284, 2024785, 34826302, 504981379, 6348337336, 70625252863, 706252528630, 6426898010533, 53752237906276, 416579843773639, 3012192716517082, 20439879147794485, 130815226545884704
OFFSET
81,2
LINKS
FORMULA
From G. C. Greubel, Nov 09 2018: (Start)
G.f.: x^81/(1-x)^82.
E.g.f.: x^81*exp(x)/81!. (End)
From Amiram Eldar, Dec 18 2020: (Start)
Sum_{n>=81} 1/a(n) = 81/80.
Sum_{n>=81} (-1)^(n+1)/a(n) = A001787(81)*log(2) - A242091(81)/80! = 97922991388784963151200256*log(2) - 20383793233274067347552815305959536366374285194354782880613 / 300313511618462804737247891718800 = 0.9880887084... (End)
MATHEMATICA
Table[Binomial[n, 81], {n, 81, 100}] (* Harvey P. Dale, Jan 23 2011 *)
PROG
(Sage) [binomial(n, 81) for n in range(81, 97)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=81, 100, print1(binomial(n, 81), ", ")) \\ G. C. Greubel, Nov 09 2018
(Magma) [Binomial(n, 81): n in [81..100]]; // G. C. Greubel, Nov 09 2018
CROSSREFS
Sequence in context: A230395 A017798 A035736 * A217676 A203169 A214815
KEYWORD
nonn
STATUS
approved