login
A017743
Binomial coefficients C(n,79).
2
1, 80, 3240, 88560, 1837620, 30872016, 437353560, 5373200880, 58433559570, 571350360240, 5085018206136, 41604694413840, 315502265971620, 2232785266876080, 14832073558533960, 92947660966812816
OFFSET
79,2
LINKS
FORMULA
From G. C. Greubel, Nov 09 2018: (Start)
G.f.: x^79/(1-x)^80.
E.g.f.: x^79*exp(x)/79!. (End)
From Amiram Eldar, Dec 18 2020: (Start)
Sum_{n>=79} 1/a(n) = 79/78.
Sum_{n>=79} (-1)^(n+1)/a(n) = A001787(79)*log(2) - A242091(79)/78! = 23876284937388926200446976*log(2) - 212331179513271534870341816521451408250369273338509183843 / 12829849388763442607445716893050 = 0.9877978641... (End)
MATHEMATICA
Array[Binomial[#, 79] &, 16, 79] (* Michael De Vlieger, Jul 06 2018 *)
PROG
(Sage) [binomial(n, 79) for n in range(79, 95)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=79, 100, print1(binomial(n, 79), ", ")) \\ G. C. Greubel, Nov 09 2018
(Magma) [Binomial(n, 79): n in [79..100]]; // G. C. Greubel, Nov 09 2018
CROSSREFS
Sequence in context: A017796 A035735 A035805 * A234325 A196280 A286789
KEYWORD
nonn
STATUS
approved