login
A017747
Binomial coefficients C(n,83).
2
1, 84, 3570, 102340, 2225895, 39175752, 581106988, 7471375560, 84986896995, 868754947060, 8079421007658, 69042324974532, 546585072715045, 4036320536972640, 27965935149024720, 182710776306961504
OFFSET
83,2
LINKS
FORMULA
From G. C. Greubel, Nov 10 2018: (Start)
G.f.: x^83/(1-x)^84.
E.g.f.: x^83*exp(x)/83!. (End)
From Amiram Eldar, Dec 18 2020: (Start)
Sum_{n>=83} 1/a(n) = 83/82.
Sum_{n>=83} (-1)^(n+1)/a(n) = A001787(83)*log(2) - A242091(83)/82! = 401363372112056886002450432*log(2) - 1691854838361747589846883689013163648779313031899544168425629 / 6081348610273871795929269807305700 = 0.9883660041... (End)
MAPLE
seq(binomial(n, 83), n=83..100); # Muniru A Asiru, Nov 11 2018
MATHEMATICA
Binomial[Range[83, 100], 83] (* Harvey P. Dale, Oct 08 2016 *)
PROG
(Sage) [binomial(n, 83) for n in range(83, 99)] # Zerinvary Lajos, May 23 2009
(PARI) for(n=83, 100, print1(binomial(n, 83), ", ")) \\ G. C. Greubel, Nov 10 2018
(Magma) [Binomial(n, 83): n in [83..100]]; // G. C. Greubel, Nov 10 2018
(GAP) List([83..100], n->Binomial(n, 83)); # Muniru A Asiru, Nov 11 2018
CROSSREFS
Sequence in context: A017800 A035737 A035806 * A223959 A143402 A004379
KEYWORD
nonn
STATUS
approved