login
A016960
a(n) = (6*n + 4)^4.
9
256, 10000, 65536, 234256, 614656, 1336336, 2560000, 4477456, 7311616, 11316496, 16777216, 24010000, 33362176, 45212176, 59969536, 78074896, 100000000, 126247696, 157351936, 193877776, 236421376, 285610000, 342102016, 406586896, 479785216, 562448656, 655360000
OFFSET
0,1
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Sep 23 2013
G.f.: 16*(16+545*x+1131*x^2+251*x^3+x^4)/(1-x)^5. - Harvey P. Dale, Aug 21 2021
From Amiram Eldar, Mar 31 2022: (Start)
a(n) = A016957(n)^4 = A016958(n)^2.
a(n) = 16*A016792(n).
Sum_{n>=0} 1/a(n) = PolyGamma(3, 2/3)/7776. (End)
MATHEMATICA
(6*Range[0, 20]+4)^4 (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {256, 10000, 65536, 234256, 614656}, 30] (* Harvey P. Dale, Sep 23 2013 *)
PROG
(Magma) [(6*n+4)^4: n in [0..40]]; // Vincenzo Librandi, May 06 2011
CROSSREFS
Subsequence of A000583.
Sequence in context: A230973 A191680 A191496 * A224393 A224026 A237966
KEYWORD
nonn,easy
STATUS
approved