login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015614
a(n) = -1 + Sum_{i=1..n} phi(i).
26
0, 1, 3, 5, 9, 11, 17, 21, 27, 31, 41, 45, 57, 63, 71, 79, 95, 101, 119, 127, 139, 149, 171, 179, 199, 211, 229, 241, 269, 277, 307, 323, 343, 359, 383, 395, 431, 449, 473, 489, 529, 541, 583, 603, 627, 649, 695, 711, 753, 773, 805, 829, 881, 899, 939, 963
OFFSET
1,3
COMMENTS
Number of elements in the set {(x,y): 1 <= x < y <= n, 1=gcd(x,y)}. - Michael Somos, Jun 13 1999
Number of fractions in (Haros)-Farey series of order n.
The asymptotic limit for the sequence is a(n) ~ 3*n^2/Pi^2. - Martin Renner, Dec 12 2011
2*a(n) is the number of proper fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value. - Stefano Spezia, Aug 09 2019
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, pp. 170-171.
LINKS
James J. Sylvester, On the number of fractions contained in any Farey series of which the limiting number is given, in: London, Edinburgh and Dublin Philosophical Magazine (5th series) 15 (1883), p. 251.
FORMULA
a(n) = -1 + A002088(n).
a(n) = (A018805(n) - 1)/2. - Reinhard Zumkeller, Apr 08 2006
For n > 1: A214803(a(n)) = A165900(n-1). - Reinhard Zumkeller, Jul 29 2012
a(n) = A018805(n) - A002088(n). - Reinhard Zumkeller, Jan 21 2013
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} mu(k) * x^k / (1 - x^k)^2). - Ilya Gutkovskiy, Feb 14 2020
a(n) = A000217(n-1) - A185670(n). - Hossein Mahmoodi, Jan 20 2022
EXAMPLE
x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 11*x^6 + 17*x^7 + 21*x^8 +27*x^9 + ...
MAPLE
with(numtheory): a:=n->add(phi(i), i=1..n): seq(a(n)-1, n=1..60); # Muniru A Asiru, Jul 31 2018
MATHEMATICA
Table[Sum[EulerPhi[m], {m, 1, n}]-1, {n, 1, 56}] (* Geoffrey Critzer, May 16 2014 *)
PROG
(Haskell)
a015614 = (subtract 1) . a002088 -- Reinhard Zumkeller, Jul 29 2012
(PARI) {a(n) = if( n<1, 0, sum(k=1, n, eulerphi(k), -1))} /* Michael Somos, Sep 06 2013 */
(GAP) List([1..60], n->Sum([1..n], i->Phi(i)))-1; # Muniru A Asiru, Jul 31 2018
(Magma) [-1+&+[EulerPhi(i): i in [1..n]]:n in [1..56]]; // Marius A. Burtea, Aug 09 2019
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A015614(n): # based on second formula in A018805
if n == 0:
return -1
c, j = 2, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(2*A015614(k1)+1)
j, k1 = j2, n//j2
return (n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 24 2021
CROSSREFS
Column k=2 of triangle A186974.
Sequence in context: A329110 A114186 A117992 * A138203 A225523 A007952
KEYWORD
nonn
EXTENSIONS
More terms from Reinhard Zumkeller, Apr 08 2006
STATUS
approved