login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015195 Sum of Gaussian binomial coefficients for q=9. 3
1, 2, 12, 184, 9104, 1225248, 540023488, 652225844096, 2584219514040576, 28081351726592246272, 1001235747932175990213632, 97915621602690773814148184064, 31420034518763282871588038742544384, 27654326463468067495668136467306727743488 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..60

FORMULA

a(n) = 2*a(n-1)+(9^(n-1)-1)*a(n-2), (Goldman + Rota, 1969). - Vaclav Kotesovec, Aug 21 2013

a(n) ~ c * 9^(n^2/4), where c = EllipticTheta[3,0,1/9]/QPochhammer[1/9,1/9] = 1.3946866902389... if n is even and c = EllipticTheta[2,0,1/9]/QPochhammer[1/9,1/9] = 1.333574200539... if n is odd. - Vaclav Kotesovec, Aug 21 2013

MATHEMATICA

Total/@Table[QBinomial[n, m, 9], {n, 0, 20}, {m, 0, n}] (* Vincenzo Librandi, Nov 01 2012 *)

Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(9^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)

CROSSREFS

Cf. A006116, A006117, A006118, A006119, A006120, A006121, A006122.

Sequence in context: A006023 A039748 A007764 * A051421 A182162 A258994

Adjacent sequences:  A015192 A015193 A015194 * A015196 A015197 A015198

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 20:28 EDT 2018. Contains 313927 sequences. (Running on oeis4.)