
COMMENTS

Twice A008804 (up to offset).
From Alexander Adamchuk, Nov 29 2006: (Start)
n divides a(n) for n = {1,2,3,4,5,8,10,13,14,16,17,20,22,25,26,28,29,32,34,37,38,40,41,44,46,49,50,52,53,56,58,61,62,64,65,68,70,73,74,76,77,80,82,85,86,88,89,92,94,97,98,100,...}.
Prime p divides a(p) for p = {2,3,5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,...} = (2,3) and all primes from A002144(n) Pythagorean primes: primes of form 4n+1.
(n+1) divides a(n) for n = {1,2,3,4,5,19,27,43,51,67,75,91,99,...}.
(p+1) divides a(p) for prime p = {2,3,5,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,739,787,811,859,883,907,...} = {2,5} and all primes from A107154(n) Primes of the form 3x^2+16y^2.
(n1) divides a(n) for n = {2,3,4,5,21,29,45,53,69,77,93,101,...}.
(p1) divides a(p) for prime p = {2,3,5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,677,701,773,797,821,941,..} = {2,3} and all primes from A107003(n) Primes of the form 5x^2+2xy+5y^2, with x and y any integer.
(n2) divides a(n) for n = {3,4,5,12,16,24,28,36,40,48,52,60,64,72,76,84,88,96,100,...} = {3,5} and 4*A032766(n) Numbers congruent to 0 or 1 mod 3.
(n+3) divides a(n) for n = {1,2,3,4,5,9,11,18,32,39}.
(n3) divides a(n) for n = {4,5,7,9,23,31,47,55,71,79,95,103,119,127,143,151,167,175,...}.
(p+3) divides a(p) for prime p = {5,7,23,31,47,71,79,103,127,151,167,191,199,...} = [5} and all primes from A007522(n) Primes of form 8n+7.
(n4) divides a(n) for n = {5,6,8,11,12,14,15,18,20,23,24,26,27,30,32,35,36,38,39,42,44,47,48,50,...}.
(p4) divides a(p) for prime p = {5,11,23,47,59,71,83,107,131,167,179,191,...} = {5} and all primes from A068231(n) Primes congruent to 11 (mod 12).
(n+5) divides a(n) for n = {1,2,3,4,5,30,31,45,58,145}.
(n5) divides a(n) for n = {6,7,9,10,20,25,33,49,57,73,81,97,105,...}.
(p5) divides a(p) for prime p = {7,73,97,193,241,313,337,409,433,457,577,601,673,769,937,...} = {7} and all primes from A107008(n) Primes of the form x^2+24y^2. (End)
