login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068231 Primes congruent to 11 mod 12. 32
11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263, 311, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 563, 587, 599, 647, 659, 683, 719, 743, 827, 839, 863, 887, 911, 947, 971, 983, 1019, 1031, 1091, 1103, 1151, 1163, 1187, 1223 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Intersection of A002145 (primes of form 4n+3) and A003627 (primes of form 3n-1). So these are both Gaussian primes with no imaginary part and Eisenstein primes with no imaginary part. - Alonso del Arte, Mar 29 2007

Is this the same sequence as A141187 (apart from the initial 3)?

If p is prime of the form 2*a(n)^k + 1, then p divides a cyclotomic number Phi(a(n)^k, 2). - Arkadiusz Wesolowski, Jun 14 2013

Also a(n) = primes p dividing A014138((p-3)/2), where A014138(n) = Partial sums of (Catalan numbers starting 1,2,5,...), cf. A000108. - Alexander Adamchuk, Dec 27 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Prime/@Range[250], Mod[ #, 12]==11&]

PROG

(PARI) for(i=1, 250, if(prime(i)%12==11, print(prime(i))))

(MAGMA) [p: p in PrimesUpTo(1500) | p mod 12 eq 11 ]; // Vincenzo Librandi, Aug 14 2012

(MATLAB)

%4n-1 and 6n-1 primes

n = 1:10000;

n2 = 4*n-1;

n3 = 3*n-1;

p = primes(max(n2));

Res = intersect(n2, n3);

Res2 = intersect(Res, p); %Jesse H. Crotts, Sep 25 2016

CROSSREFS

Cf. A068227, A068228, A068229, A040117, A068232, A068233, A068234, A068235, A000040, A014138, A000108.

Sequence in context: A195043 A029468 A198588 * A185005 A073024 A161897

Adjacent sequences:  A068228 A068229 A068230 * A068232 A068233 A068234

KEYWORD

easy,nonn

AUTHOR

Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002

EXTENSIONS

Edited by Dean Hickerson, Feb 27 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 03:33 EST 2018. Contains 299630 sequences. (Running on oeis4.)