login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014263
Numbers that contain even digits only.
65
0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 40, 42, 44, 46, 48, 60, 62, 64, 66, 68, 80, 82, 84, 86, 88, 200, 202, 204, 206, 208, 220, 222, 224, 226, 228, 240, 242, 244, 246, 248, 260, 262, 264, 266, 268, 280, 282, 284, 286, 288, 400, 402, 404, 406, 408, 420, 422, 424
OFFSET
1,2
COMMENTS
The set of real numbers between 0 and 1 that contain no odd digits in their decimal expansion has Hausdorff dimension log 5 / log 10.
Integers written in base 5 and then doubled (in base 10). - Franklin T. Adams-Watters, Mar 15 2006
The carryless mod 10 "even" numbers (cf. A004529) sorted and duplicates removed. - N. J. A. Sloane, Aug 03 2010.
Complement of A007957; A196564(a(n)) = 0; A103181(a(n)) = 0. - Reinhard Zumkeller, Oct 04 2011
If n-1 is represented as a base-5 number (see A007091) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,2,4,6,8 for k=0..4. - Hieronymus Fischer, Jun 03 2012
REFERENCES
K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 19.
FORMULA
A045888(a(n)) = 0. - Reinhard Zumkeller, Aug 25 2009
a(n) = A179082(n) for n <= 25. - Reinhard Zumkeller, Jun 28 2010
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = ((2*b_m(n)) mod 8 + 2)*10^m + Sum_{j=0..m-1} ((2*b_j(n)) mod 10)*10^j, where n>1, b_j(n) = floor((n-1-5^m)/5^j), m = floor(log_5(n-1)).
a(1*5^n+1) = 2*10^n.
a(2*5^n+1) = 4*10^n.
a(3*5^n+1) = 6*10^n.
a(4*5^n+1) = 8*10^n.
a(n) = 2*10^log_5(n-1) for n=5^k+1,
a(n) < 2*10^log_5(n-1), else.
a(n) > (8/9)*10^log_5(n-1) n>1.
a(n) = 2*A007091(n-1), iff the digits of A007091(n-1) are 0 or 1.
G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^5^j *(1-x^5^j)* (2+4x^5^j+ 6(x^2)^5^j+ 8(x^3)^5^j)/(1-x^5^(j+1)).
Also: g(x) = 2*(x/(1-x))*Sum_{j>=0} 10^j*x^5^j * (1-4x^(3*5^j)+3x^(4*5^j))/((1-x^5^j)(1-x^5^(j+1))).
Also: g(x) = 2*(x/(1-x))*(h_(5,1)(x) + h_(5,2)(x) + h_(5,3)(x) + h_(5,4)(x) - 4*h_(5,5)(x)), where h_(5,k)(x) = Sum_{j>=0} 10^j*(x^5^j)^k/(1-(x^5^j)^5). (End)
a(5*n+i-4) = 10*a(n) + 2*i for n >= 1, i=0..4. - Robert Israel, Apr 07 2016
Sum_{n>=2} 1/a(n) = A194182. - Bernard Schott, Jan 13 2022
EXAMPLE
a(1000) = 24888.
a(10^4) = 60888.
a(10^5) = 22288888.
a(10^6) = 446888888.
MAPLE
a:= proc(m) local L, i;
L:= convert(m-1, base, 5);
2*add(L[i]*10^(i-1), i=1..nops(L))
end proc:
seq(a(i), i=1..100); # Robert Israel, Apr 07 2016
MATHEMATICA
Select[Range[450], And@@EvenQ[IntegerDigits[#]]&] (* Harvey P. Dale, Jan 30 2011 *)
PROG
(Haskell)
a014263 n = a014263_list !! (n-1)
a014263_list = filter (all (`elem` "02468") . show) [0, 2..]
-- Reinhard Zumkeller, Jul 05 2011
(Magma) [n: n in [0..424] | Set(Intseq(n)) subset [0..8 by 2]]; // Bruno Berselli, Jul 19 2011
(Python)
from sympy.ntheory.digits import digits
def a(n): return int(''.join(str(2*d) for d in digits(n, 5)[1:]))
print([a(n) for n in range(58)]) # Michael S. Branicky, Jan 13 2022
(Python)
from itertools import count, islice, product
def agen(): # generator of terms
yield 0
for d in count(1):
for first in "2468":
for rest in product("02468", repeat=d-1):
yield int(first + "".join(rest))
print(list(islice(agen(), 58))) # Michael S. Branicky, Jan 13 2022
(PARI) a(n) = 2*fromdigits(digits(n-1, 5), 10); \\ Michel Marcus, Nov 04 2022
KEYWORD
nonn,base,easy
EXTENSIONS
Examples and crossrefs added by Hieronymus Fischer, Jun 06 2012
STATUS
approved