

A014262


Inverse of 253rd cyclotomic polynomial.


3



1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Periodic with period length 253.  Ray Chandler, Apr 03 2017
In general the expansion of 1/Phi(N) is Nperiodic, but also satisfies a linear recurrence of lower order given by degree(Phi(N)) = phi(N) = A000010(N) < N. The signature is given by the coefficients of (1Phi(N)).  M. F. Hasler, Feb 18 2018


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, order 220.
Index to sequences related to inverse of cyclotomic polynomials


MAPLE

with(numtheory, cyclotomic); c := n>series(1/cyclotomic(n, x), x, 80);


MATHEMATICA

CoefficientList[Series[1/Cyclotomic[253, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 07 2014 *)


PROG

(PARI) Vec(1/polcyclo(253)+O(x^99)) \\ Charles R Greathouse IV, Mar 24 2014


CROSSREFS

Cf. similar sequences listed in A240328, A240467.
Sequence in context: A014691 A014328 A014647 * A014515 A014218 A014427
Adjacent sequences: A014259 A014260 A014261 * A014263 A014264 A014265


KEYWORD

sign,easy


AUTHOR

Simon Plouffe


STATUS

approved



