login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013646
Least m such that the continued fraction for sqrt(m) has period n.
14
1, 2, 3, 41, 7, 13, 19, 58, 31, 106, 43, 61, 46, 193, 134, 109, 94, 157, 139, 337, 151, 181, 166, 586, 271, 457, 211, 949, 334, 821, 379, 601, 463, 613, 331, 1061, 478, 421, 619, 541, 526, 1117, 571, 1153, 604, 1249, 694, 1069, 631, 1021, 1051, 1201, 751, 1669, 886
OFFSET
0,2
COMMENTS
In a search of fractions up to sqrt(1650241399), the smallest length not yet seen is 97921. The next unseen lengths are 101679, 102181 and 102407. After 145 more missing odd lengths, the first even length not seen is 107292. This would suggest that A215485 may be exclusively odd after an early 2, but beware the law of small numbers! - Patrick McKinley, Aug 24 2012
a(97921) = 1664155249, a(101679) = 1654486681, a(102181) = 1682919001, a(102407) = 1680133849, a(107292) = 1651931884, thus 107292 is not in A215485. - Chai Wah Wu, Jun 08 2017
a(999213) = 133511789629, a(1000000) = 98814608764. - Michael Hortmann, Mar 20 2023
REFERENCES
Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).
LINKS
Patrick McKinley, Table of n, a(n) for n = 0..97920 (first 1000 terms from T. D. Noe)
FORMULA
A003285(a(n)) = n. - Pontus von Brömssen, Nov 24 2024
MATHEMATICA
a[n_] := Catch[For[m = 1, True, m++, If[Length[ Last[ ContinuedFraction[ Sqrt[m] ]]] == n, Print[m]; Throw[m] ]]]; Table[a[n], {n, 0, 54}](* Jean-François Alcover, May 15 2012 *)
Flatten[Table[Position[Table[{s=Sqrt[n]}; If[IntegerQ[s], 0, Length[ ContinuedFraction[s] [[2]]]], {n, 2000}], i, {1}, 1], {i, 0, 60}]] (* Harvey P. Dale, Sep 15 2013 *)
CROSSREFS
Sequence in context: A340394 A288519 A240588 * A059800 A330293 A302687
KEYWORD
nonn,nice
AUTHOR
STATUS
approved