

A013644


Numbers n such that the continued fraction for sqrt(n) has period 4.


4



7, 14, 23, 28, 32, 33, 34, 47, 55, 60, 62, 75, 78, 79, 95, 96, 98, 119, 126, 128, 136, 138, 140, 141, 142, 155, 167, 174, 176, 180, 189, 192, 194, 215, 219, 220, 222, 223, 248, 252, 254, 266, 287, 299, 300, 305, 312, 315, 318, 320, 321, 322, 335, 359, 368, 377, 390, 392
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Kenneth H. Rosen, Elementary Number Theory and Its Applications, AddisonWesley, 1984, page 426 (but beware of errors!).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
Mack, Austin and Timothy Sawicki (2012) Pellâ€™s Equations Through Dynamical Systems


FORMULA

see Mack, Austin and Timothy Sawicki(2012)


EXAMPLE

The continued fraction for sqrt(7) is [2;1,1,1,4,...] with period 4, so 7 is in the sequence. The continued fractions sqrt(3) = [1;1,2,...] with period 2 and sqrt(13) = [3;1,1,1,1,6,...] with period 5 do not have period 4, so 3 and 13 are not in the sequence.  Michael B. Porter, Sep 20 2016


MATHEMATICA

cfp4Q[n_]:=Module[{sr=Sqrt[n]}, !IntegerQ[sr]&&Length[ ContinuedFraction[ sr][[2]]]==4]; Select[Range[500], cfp4Q] (* Harvey P. Dale, Jul 29 2014 *)


CROSSREFS

Sequence in context: A246172 A297426 A036556 * A178894 A050953 A232825
Adjacent sequences: A013641 A013642 A013643 * A013645 A013646 A013647


KEYWORD

nonn


AUTHOR

Clark Kimberling


STATUS

approved



