|
|
A008786
|
|
a(n) = (n+5)^n.
|
|
8
|
|
|
1, 6, 49, 512, 6561, 100000, 1771561, 35831808, 815730721, 20661046784, 576650390625, 17592186044416, 582622237229761, 20822964865671168, 799006685782884121, 32768000000000000000, 1430568690241985328321
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
|
|
FORMULA
|
E.g.f.(x) for b(n) = n^(n-5) = a(n-5): T -(15/16)*T^2 +(85/216)T^3 -(25/288)*T^4 +(1/120)*T^5, where T=T(x) is Euler's tree function. - Len Smiley, Nov 17 2001
E.g.f.: -LambertW(-x)^5/(1+LambertW(-x))/x^5. - Vladeta Jovovic, Nov 07 2003
|
|
MAPLE
|
seq(mul(n+5, k=6..n+5), n=0..20); # Zerinvary Lajos, Feb 15 2008
a:=n->mul(denom(1/(n+5)), k=0..n-1): seq(a(n), n=0..20); # Zerinvary Lajos, Apr 26 2008
with(finance):seq(futurevalue(1, n+4, n), n=0..20); # Zerinvary Lajos, Mar 25 2009
|
|
MATHEMATICA
|
Table[(n+5)^n, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Dec 26 2010 *)
|
|
PROG
|
(MAGMA) [(n+5)^n: n in [0..20]]; // Vincenzo Librandi, Jun 11 2013
(PARI) vector(20, n, (n+4)^(n-1)) \\ G. C. Greubel, Sep 11 2019
(Sage) [(n+5)^n for n in (0..20)] # G. C. Greubel, Sep 11 2019
(GAP) List([0..20], n-> (n+5)^n); # G. C. Greubel, Sep 11 2019
|
|
CROSSREFS
|
Cf. A000169, A000272, A000312, A007778, A007830, A008785, this sequence, A008787, A008788, A008789, A008790, A008791.
Sequence in context: A098306 A055847 A143165 * A274278 A286799 A245797
Adjacent sequences: A008783 A008784 A008785 * A008787 A008788 A008789
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|