|
|
A245797
|
|
The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.
|
|
22
|
|
|
0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..50
|
|
FORMULA
|
a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).
|
|
MATHEMATICA
|
m = 16;
egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
a[n_] := 2^(n(n-1)/2) - A059167[n];
Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Min@@Length/@Split[Sort[Join@@#]]==1&]], {n, 0, 5}] (* Gus Wiseman, Sep 11 2019 *)
|
|
CROSSREFS
|
Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.
Cf. A001187, A006129, A059166, A059167, A100743, A136284, A327079, A327098, A327103, A327229, A327230.
Sequence in context: A008786 A274278 A286799 * A046195 A305376 A024268
Adjacent sequences: A245794 A245795 A245796 * A245798 A245799 A245800
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Chai Wah Wu, Aug 01 2014
|
|
EXTENSIONS
|
a(9)-a(16) from Andrew Howroyd, Oct 26 2017
|
|
STATUS
|
approved
|
|
|
|