OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
G.f.: (1 + 232*x + 7228*x^2 + 55384*x^3 + 133510*x^4 + 107224*x^5 + 24508*x^6 + 232*x^7 + x^8)/(1 - x)^9.
a(0)=1, a(1)=241, a(2)=9361, a(3)=131041, a(4)=996001, a(5)=5109841, a(6)=20015281, a(7)=64495681, a(8)=179375041, a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Jun 12 2012
MAPLE
57/7*n^8+108/7*n^7+30*n^6+72*n^5+39*n^4+36*n^3+300/7*n^2-24/7*n+1;
MATHEMATICA
CoefficientList[Series[(1+232x+7228x^2+107224x^5+133510x^4+ 55384x^3+ 24508x^6+ 232x^7+ x^8)/(1-x)^9, {x, 0, 30}], x] (* or *) LinearRecurrence[ {9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 241, 9361, 131041, 996001, 5109841, 20015281, 64495681, 179375041}, 30] (* Harvey P. Dale, Jun 12 2012 *)
PROG
(Python)
A008349_list, m = [], [328320, -1071360, 1347840, -812160, 233280, -25920, 240, 0, 1]
for _ in range(10**2):
A008349_list.append(m[-1])
for i in range(8):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
(Magma) [57/7*n^8 + 108/7*n^7 + 30*n^6 + 72*n^5 + 39*n^4 + 36*n^3 + 300/7*n^2 - 24/7*n + 1: n in [0..40]]; // Vincenzo Librandi, Dec 16 2015
(PARI) a(n)=(57*n^8 + 108*n^7 + 210*n^6 + 504*n^5 + 273*n^4 + 252*n^3 + 300*n^2 - 24*n + 7)/7 \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
The values given by O'Keeffe are incorrect.
STATUS
approved