The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007725 Number of spanning trees of Aztec diamonds of order n. 7
 1, 4, 768, 18170880, 48466759778304, 14179455913065873408000, 449549878218740179750040371200000, 1534679662450485063038349752542766158611218432, 561985025597966566291275288056092110323394467225010519932928 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Timothy Y. Chow, The Q-spectrum and spanning trees of tensor products of bipartite graphs, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3155-3161. D. E. Knuth, Aztec Diamonds, Checkerboard Graphs, and Spanning Trees, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257. R. P. Stanley, Spanning trees of Aztec diamonds, Discrete Math. 157 (1996), 375-388 (Problem 251). FORMULA a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 4^n), where G is the Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021 a(n) = 4^(2*n-1) * Product_{1<=j,k<=n-1} (4 - 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))*(4 + 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n))); [Knuth Eq. (8) p. 3]. - Seiichi Manyama, Jan 05 2021 MATHEMATICA Table[4^n * Product[Product[4 - 4*Cos[j*Pi/(2*n)]*Cos[k*Pi/(2*n)], {k, 1, n-1}], {j, 1, 2*n-1}], {n, 0, 10}] // Round (* Vaclav Kotesovec, Jan 05 2021 *) PROG (PARI) default(realprecision, 120); {a(n) = if(n==0, 1, round(4^(2*(n-1)*n+1)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 05 2021 CROSSREFS Cf. A007726, A340166, A340176, A340185, A340352. Sequence in context: A284813 A306254 A068112 * A102195 A114766 A239623 Adjacent sequences:  A007722 A007723 A007724 * A007726 A007727 A007728 KEYWORD nonn AUTHOR EXTENSIONS More terms from Alois P. Heinz, Jan 20 2011 Offset changed (a(0)=1) by Seiichi Manyama, Jan 05 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 01:36 EDT 2021. Contains 342912 sequences. (Running on oeis4.)