OFFSET
0,3
COMMENTS
*
|
* *---*---*
| | | |
* *---*---* *---*---*---*---*
| | | | | | | | |
*---*---* *---*---*---*---* *---*---*---*---*---*---*
HOD_1 HOD_2 HOD_3
-------------------------------------------------------------
*
|
*---*---*
| | |
*---*---*---*---*
| | | | |
*---*---*---*---*---*---*
| | | | | | |
*---*---*---*---*---*---*---*---*
HOD_4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..40
Mihai Ciucu, Symmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole, arXiv:0710.4500 [math.CO], 2007. See Corollary 3.7.
FORMULA
a(n) = Product_{1<=j<k<=2*n and j+k<=2*n} (4 - 4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1))).
From Seiichi Manyama, Jan 02 2021: (Start)
a(n) = 4^((n-1)*n) * Product_{1<=j<k<=n} (1 - cos(j*Pi/(2*n+1))^2 * cos(k*Pi/(2*n+1))^2).
a(n) ~ sqrt(Gamma(1/4)) * exp(G*(2*n+1)^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n + 3/4) * (1 + sqrt(2))^(n + 1/2)), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 03 2021
MATHEMATICA
Table[4^((n-1)*n) * Product[Product[(1 - Cos[j*Pi/(2*n + 1)]^2*Cos[k*Pi/(2*n + 1)]^2), {k, j+1, n}], {j, 1, n}], {n, 0, 12}] // Round (* Vaclav Kotesovec, Jan 03 2021 *)
PROG
(PARI) default(realprecision, 120);
{a(n) = round(prod(j=1, 2*n, prod(k=j+1, 2*n-j, 4-4*cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))))}
(PARI) default(realprecision, 120);
{a(n) = round(4^((n-1)*n)*prod(j=1, n, prod(k=j+1, n, 1-(cos(j*Pi/(2*n+1))*cos(k*Pi/(2*n+1)))^2)))} \\ Seiichi Manyama, Jan 02 2021
(Python)
# Using graphillion
from graphillion import GraphSet
def make_HOD(n):
s = 1
grids = []
for i in range(2 * n + 1, 1, -2):
for j in range(i - 2):
a, b, c = s + j, s + j + 1, s + i + j
grids.extend([(a, b), (b, c)])
grids.append((s + i - 2, s + i - 1))
s += i
return grids
def A340185(n):
if n == 0: return 1
universe = make_HOD(n)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A340185(n) for n in range(7)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 31 2020
STATUS
approved