|
|
A007726
|
|
Number of spanning trees of quarter Aztec diamonds of order n.
|
|
8
|
|
|
1, 1, 4, 56, 2640, 411840, 210613312, 351102230528, 1901049105201408, 33349238079515381760, 1892086487183556298556416, 346728396311328694807284940800, 205021218459835103075295973360128000, 390870571052378289975757743555515137130496
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
Mihai Ciucu (ciucu(AT)math.gatech.edu), in preparation, 2001.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..50
Timothy Y. Chow, The Q-spectrum and spanning trees of tensor products of bipartite graphs, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3155-3161.
R. Kenyon, J. Propp and D. Wilson, Trees and matchings, Electronic Journal of Combinatorics, 7(1):R25, 2000.
D. E. Knuth, Aztec Diamonds, Checkerboard Graphs, and Spanning Trees, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257.
R. P. Stanley, Spanning trees of Aztec diamonds, Discrete Math. 157 (1996), 375-388 (Problem 251).
Index entries for sequences related to trees
|
|
FORMULA
|
a(n) = Product_{0<j<k<n} (4 - 2*cos(j*Pi/n) - 2*cos(k*Pi/n)) [from Chow]. - Sean A. Irvine, Jan 20 2018
From Vaclav Kotesovec, Dec 30 2020: (Start)
a(n) ~ sqrt(Gamma(1/4)) * 2^(5/8) * exp(2*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n/2) * (1 + sqrt(2))^n), where G is the Catalan's constant A006752.
a(n) = sqrt(A007341(n) / (n * 2^(n-1))). (End)
|
|
MATHEMATICA
|
Table[Product[Product[4 - 2*Cos[j*Pi/n] - 2*Cos[k*Pi/n], {j, 1, k-1}], {k, 2, n-1}], {n, 1, 15}] // Round (* Vaclav Kotesovec, Dec 30 2020 *)
Table[Sqrt[Resultant[ChebyshevU[n-1, x/2], ChebyshevU[n-1, (4-x)/2], x] / (n * 2^(n-1))], {n, 1, 15}] (* Vaclav Kotesovec, Dec 30 2020 *)
|
|
PROG
|
(PARI) default(realprecision, 120);
{a(n) = round(prod(j=2, n-1, prod(i=1, j-1, 4*sin(i*Pi/(2*n))^2+4*sin(j*Pi/(2*n))^2)))} \\ Seiichi Manyama, Dec 29 2020
|
|
CROSSREFS
|
Cf. A007725, A007341, A065072, A340052.
Sequence in context: A171801 A091797 A265230 * A113113 A186252 A158262
Adjacent sequences: A007723 A007724 A007725 * A007727 A007728 A007729
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Richard Stanley
|
|
EXTENSIONS
|
More terms from Sean A. Irvine, Jan 20 2018
|
|
STATUS
|
approved
|
|
|
|