OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Wikipedia, Octal
R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992
FORMULA
a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - Robert Israel, Aug 03 2014
MAPLE
A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n, base, 8): return op(convert(l, base, 10, 10^nops(l))): end: seq(A007094(n), n=0..66); # Nathaniel Johnston, May 06 2011
MATHEMATICA
Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
PROG
(PARI) a(n)=if(n<1, 0, if(n%8, a(n-1)+1, 10*a(n/8)))
(PARI) apply( A007094(n)=fromdigits(digits(n, 8)), [0..77]) \\ M. F. Hasler, Nov 18 2019
(Haskell)
a007094 0 = 0
a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
-- Reinhard Zumkeller, Aug 29 2013
(Python)
def a(n): return int(oct(n)[2:])
print([a(n) for n in range(74)]) # Michael S. Branicky, Jun 28 2021
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
STATUS
approved