This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006888 a(n) = a(n-1) + a(n-2)*a(n-3) for n > 2 with a(0) = a(1) = a(2) = 1. (Formerly M0733) 3
 1, 1, 1, 2, 3, 5, 11, 26, 81, 367, 2473, 32200, 939791, 80570391, 30341840591, 75749670168872, 2444729709746709953, 2298386861814452020993305, 185187471463742319884263934176321, 5618934645754484318302453706799174724040986 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Tends towards something like 1.60119...^(1.3247...^n) where 1.3247... = (1/2+sqrt(23/108))^(1/3)+(1/2-sqrt(23/108))^(1/3) is the smallest Pisot-Vijayaraghavan number A060006. Any four consecutive terms are pairwise coprime. - Henry Bottomley, Sep 25 2002 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..30 FORMULA Lim n->inf a(n)/(a(n-1)*a(n-5)) = 1 agrees with lim n->inf a(n) = c^(P^n) (c=1.60119..., P=PisotV) since PisotV is real root of x^3-x-1 and thus a root of x^5-x^4-1 because x^5-x^4-1 = (x^3-x-1)*(x^2-x+1) and c^(P^n)/(c^(P^(n-1)*c^(P^(n-5)) = c^(P^(n-5)*(P^5-P^4-1)). - Gerald McGarvey, Aug 14 2004 EXAMPLE From Muniru A Asiru, Jan 28 2018: (Start) a(3) = a(2) + a(1) * a(0) = 1 + 1 * 1 = 2. a(4) = a(3) + a(2) * a(1) = 2 + 1 * 1 = 3. a(5) = a(4) + a(3) * a(2) = 3 + 2 * 1 = 5. a(6) = a(5) + a(4) * a(3) = 5 + 3 * 2 = 11. a(7) = a(6) + a(5) * a(4) = 11 + 5 * 3 = 26. ... (End) MAPLE a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n=2 then 1 elif n>=3 then procname(n-1) + procname(n-2) * procname(n-3) fi; end: seq(a(n), n=0..35); # Muniru A Asiru, Jan 28 2018 MATHEMATICA a=1; b=1; c=1; lst={a, b, c}; Do[d=a*b+c; AppendTo[lst, d]; a=b; b=c; c=d, {n, 2*4!}]; lst  (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *) Nest[Append[#, Last[#] + Times @@ #[[-3 ;; -2]]] &, {1, 1, 1}, 17] (* Michael De Vlieger, Jan 23 2018 *) PROG (GAP) a := [1, 1, 1];; for n in [4..35] do a[n] := a[n-1] + a[n-2] * a[n-3]; od; a; # Muniru A Asiru, Jan 28 2018 CROSSREFS Sequence in context: A000628 A273755 A258804 * A009589 A098179 A055228 Adjacent sequences:  A006885 A006886 A006887 * A006889 A006890 A006891 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Michel ten Voorde (seqfan(AT)tenvoorde.org) Apr 11 2001 Typo in Mathematica code corrected by Vincenzo Librandi, Jun 09 2013 Definition clarified by Matthew Conroy, Jan 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 22:07 EST 2018. Contains 318087 sequences. (Running on oeis4.)