

A006891


Decimal expansion of Feigenbaum reduction parameter.
(Formerly M1311)


8



2, 5, 0, 2, 9, 0, 7, 8, 7, 5, 0, 9, 5, 8, 9, 2, 8, 2, 2, 2, 8, 3, 9, 0, 2, 8, 7, 3, 2, 1, 8, 2, 1, 5, 7, 8, 6, 3, 8, 1, 2, 7, 1, 3, 7, 6, 7, 2, 7, 1, 4, 9, 9, 7, 7, 3, 3, 6, 1, 9, 2, 0, 5, 6, 7, 7, 9, 2, 3, 5, 4, 6, 3, 1, 7, 9, 5, 9, 0, 2, 0, 6, 7, 0, 3, 2, 9, 9, 6, 4, 9, 7, 4, 6, 4, 3, 3, 8, 3, 4, 1, 2, 9, 5, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 6576
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1018
K. Briggs, A precise calculation of the Feigenbaum constants, Math. Comp., 57 (1991), 435439.
B. Derrida, A. Gervois and Y. Pomeau, Universal metric properties of bifurcations, J. Phys. A 12 (1979), 269296.
R. J. Mathar, Chebyshev series representation of Feigenbaum's perioddoubling function, arXiv:1008.4608 [math.DS]
Simon Plouffe, Feigenbaum constants
_Simon Plouffe_, Plouffe's Inverter, Feigenbaum constants to 1018 decimal places
Eric Weisstein's World of Mathematics, Feigenbaum Constant
Wikipedia, Feigenbaum constants.


EXAMPLE

2.502907875095892822283902873218215786381271376727149977336192056779235...


CROSSREFS

Cf. A006890 (Feigenbaum bifurcation velocity), A159767 (continued fraction).
Sequence in context: A011183 A005671 A127863 * A054675 A136209 A212248
Adjacent sequences: A006888 A006889 A006890 * A006892 A006893 A006894


KEYWORD

cons,nonn,nice


AUTHOR

N. J. A. Sloane, Colin Mallows, Jeffrey Shallit


EXTENSIONS

More terms from Simon Plouffe, Jan 06 2002


STATUS

approved



