

A006885


Record highest point of trajectory before reaching 1 in '3x+1' problem, corresponding to starting values in A006884.
(Formerly M2086)


13



1, 2, 16, 52, 160, 9232, 13120, 39364, 41524, 250504, 1276936, 6810136, 8153620, 27114424, 50143264, 106358020, 121012864, 593279152, 1570824736, 2482111348, 2798323360, 17202377752, 24648077896, 52483285312, 56991483520, 90239155648, 139646736808
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Both the 3x+1 steps and the halving steps are counted.
Record values in A025586: a(n) = A025586(A006884(n)) and A025586(m) < a(n) for m < A006884(n).  Reinhard Zumkeller, May 11 2013


REFERENCES

R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.
G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 7999.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..84 (from Eric Roosendaal's data)
Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 1016.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 323.
G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 7999. (Annotated scanned copy)
Eric Roosendaal, 3x+1 Path Records
Robert G. Wilson v, Letter to N. J. A. Sloane with attachments, Jan. 1989
Robert G. Wilson v, Tables of A6877, A6884, A6885, Jan. 1989
Index entries for sequences from "Goedel, Escher, Bach"
Index entries for sequences related to 3x+1 (or Collatz) problem


MATHEMATICA

mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>=n&]; t={1, max=2}; Do[If[(y=mcoll[n])>max, AppendTo[t, max=y]], {n, 3, 10^6, 4}]; t (* Jayanta Basu, May 28 2013 *)


PROG

(Haskell)
a006885 = a025586 . a006884  Reinhard Zumkeller, May 11 2013


CROSSREFS

Cf. A006884, A006877, A006878, A033492.
Sequence in context: A295906 A120948 A090453 * A220139 A027273 A210710
Adjacent sequences: A006882 A006883 A006884 * A006886 A006887 A006888


KEYWORD

nonn,nice


AUTHOR

Robert Munafo


STATUS

approved



