login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006885 Record highest point of trajectory before reaching 1 in `3x+1' problem, corresponding to starting values in A006884.
(Formerly M2086)
16
1, 2, 16, 52, 160, 9232, 13120, 39364, 41524, 250504, 1276936, 6810136, 8153620, 27114424, 50143264, 106358020, 121012864, 593279152, 1570824736, 2482111348, 2798323360, 17202377752, 24648077896, 52483285312, 56991483520, 90239155648, 139646736808 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Both the 3x+1 steps and the halving steps are counted.

Record values in A025586: a(n) = A025586(A006884(n)) and A025586(m) < a(n) for m < A006884(n). - Reinhard Zumkeller, May 11 2013

REFERENCES

R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 96.

B. Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.

D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.

G. T. Leavens and M. Vermeulen, 3x+1 search problems, Computers and Mathematics with Applications, 24 (1992), 79-99.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..84 (from Eric Roosendaal's data)

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

Eric Roosendaal, 3x+1 Path Records

Index entries for sequences from "Goedel, Escher, Bach"

Index entries for sequences related to 3x+1 (or Collatz) problem

MATHEMATICA

mcoll[n_]:=Max@@NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>=n&]; t={1, max=2}; Do[If[(y=mcoll[n])>max, AppendTo[t, max=y]], {n, 3, 10^6, 4}]; t (* Jayanta Basu, May 28 2013 *)

PROG

(Haskell)

a006885 = a025586 . a006884  -- Reinhard Zumkeller, May 11 2013

CROSSREFS

Cf. A006884, A006877, A006878, A033492.

Sequence in context: A058376 A120948 A090453 * A220139 A027273 A210710

Adjacent sequences:  A006882 A006883 A006884 * A006886 A006887 A006888

KEYWORD

nonn,nice

AUTHOR

Robert Munafo

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 15:34 EST 2014. Contains 249851 sequences.