login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006877 In the '3x+1' problem, these values for the starting value set new records for number of steps to reach 1.
(Formerly M0748)
28
1, 2, 3, 6, 7, 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, 626331, 837799 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Both the 3x+1 steps and the halving steps are counted.

This sequence without a(2) = 2 specifies where records occur in A208981. - Omar E. Pol, Apr 14 2022

REFERENCES

Gonnet, Gaston H. "Computations on the 3n+1 conjecture." Maple Technical Newsletter 6 (1991): 18-22.

D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..130 (from Eric Roosendaal's data)

T. Ahmed, H. Snevily, Are there an infinite number of Collatz integers?, 2013.

Brian Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

G. T. Leavens and M. Vermeulen, 3x+1 search programs, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)

R. Munafo, Integer Sequences Related to 3x+1 Collatz Iteration

Eric Roosendaal, 3x+1 Delay Records

Robert G. Wilson v, Letter to N. J. A. Sloane with attachments, Jan. 1989

Robert G. Wilson v, Tables of A6877, A6884, A6885, Jan. 1989

Index entries for sequences from "Goedel, Escher, Bach"

Index entries for sequences related to 3x+1 (or Collatz) problem

MAPLE

A006877 := proc(n) local a, L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;

MATHEMATICA

numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* Jean-François Alcover, Feb 14 2012 *)

DeleteDuplicates[Table[{n, Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #>1&]]}, {n, 838000}], GreaterEqual[#1[[2]], #2[[2]]]&][[All, 1]] (* Harvey P. Dale, May 13 2022 *)

PROG

(PARI) A006577(n)=my(s); while(n>1, n=if(n%2, 3*n+1, n/2); s++); s

step(n, r)=my(t); forstep(k=bitor(n, 1), 2*n, 2, t=A006577(k); if(t>r, return([k, t]))); [2*n, r+1]

r=0; print1(n=1); for(i=1, 100, [n, r]=step(n, r); print1(", "n)) \\ Charles R Greathouse IV, Apr 01 2013

CROSSREFS

Cf. A006884, A006885, A006877, A006878, A033492.

Sequence in context: A018700 A018295 A033495 * A328832 A263881 A208892

Adjacent sequences: A006874 A006875 A006876 * A006878 A006879 A006880

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Robert Munafo

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)