

A006703


Solution to Pellian: y such that x^2  n*y^2 = +1.
(Formerly M0399)


8



0, 1, 1, 0, 1, 2, 3, 1, 0, 1, 3, 2, 5, 4, 1, 0, 1, 4, 39, 2, 12, 42, 5, 1, 0, 1, 5, 24, 13, 2, 273, 3, 4, 6, 1, 0, 1, 6, 4, 3, 5, 2, 531, 30, 24, 3588, 7, 1, 0, 1, 7, 90, 25, 66, 12, 2, 20, 13, 69, 4, 3805, 8, 1, 0, 1, 8, 5967, 4, 936, 30, 413, 2, 125, 5, 3, 6630, 40, 6, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


REFERENCES

A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 113, Cambridge Univ. Press, London, 18891897, Vol. 13, pp. 430443.
C. F. Degen, Canon Pellianus. Hafniae, Copenhagen, 1817.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000
A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 113, Cambridge Univ. Press, London, 18891897, Vol. 13, pp. 430443. (Annotated scanned copy)
M. Zuker, Fundamental solution to Pell's Equation x^2  d*y^2 = +1 [Broken link]


MATHEMATICA

r[x_, n_] := Reduce[ y > 0 && (x^2  n*y^2 == 1  x^2  n*y^2 == 1 ), y, Integers]; a[n_ /; IntegerQ[ Sqrt[n]]] = 0; a[n_] := a[n] = (k = 1; While[r[k, n] === False, k++]; y /. ToRules[r[k, n]]); Table[ Print[ a[n] ]; a[n], {n, 1, 79}] (* JeanFrançois Alcover, Jan 30 2012 *)


CROSSREFS

Cf. A006702 (for the x values), A077233.
Sequence in context: A278313 A006705 A031269 * A133623 A065862 A189117
Adjacent sequences: A006700 A006701 A006702 * A006704 A006705 A006706


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Corrected and extended by T. D. Noe, May 19 2007


STATUS

approved



