OFFSET
0,3
REFERENCES
V. I. Arnol'd, A branched covering of CP^2->S^4, hyperbolicity and projective topology [ Russian ], Sibir. Mat. Zhurn., 29 (No. 2, 1988), 36-47 = Siberian Math. J., 29 (1988), 717-725.
S. K. Lando and A. K. Zvonkin, "Plane and projective meanders", Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
S. K. Lando and A. K. Zvonkin, "Meanders", Selecta Mathematica Sovietica Vol. 11, Number 2, pp. 117-144, 1992.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Motohisa Fukuda, Ion Nechita, Enumerating meandric systems with large number of components, arXiv preprint arXiv:1609.02756 [math.CO], 2016.
S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303. (Annotated scanned copy)
S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Theoretical Computer Science Vol. 117, pp. 227-241, 1993.
FORMULA
A(x^2) = S(x^2)#inv(x*S(x^2)) where # is functional composition, S(x) is g.f. of A001246 (squares of Catalan numbers) and inv(.) is functional inverse. A(x) consists of even-numbered terms of A(x^2), odd terms of which are 0. - Doug McIlroy (doug(AT)cs.dartmouth.edu), Mar 22 2006
MATHEMATICA
terms = 25;
S[x_] = Sum[CatalanNumber[k]^2 x^k, {k, 0, 2 terms}];
inv = InverseSeries[x S[x^2] + O[x]^(2 terms), x] // Normal;
(S[x^2] /. x -> inv) + O[x]^(2 terms) // CoefficientList[#, x]& // DeleteCases[#, 0]& (* Jean-François Alcover, Sep 04 2018 *)
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Doug McIlroy (doug(AT)cs.dartmouth.edu), Mar 22 2006
STATUS
approved