The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006666 Number of halving steps to reach 1 in '3x+1' problem, or -1 if this never happens. (Formerly M3733) 47
 0, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, 11, 11, 8, 16, 8, 70, 13, 13, 13, 67, 5, 18, 10, 10, 15, 15, 15, 23, 7, 69, 7, 20, 12, 12, 12, 66, 9, 17, 17, 17, 9, 9, 71, 71, 14, 22, 14, 22, 14, 14, 68, 68, 6, 19, 19, 19, 11, 11, 11, 65, 16, 73, 16, 11, 16 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Equals the total number of steps to reach 1 under the modified '3x+1' map: T(n) = n/2 if n is even, (3n+1)/2 if n is odd (see A014682). A092892(a(n)) = n and A092892(m) <> n for m < a(n). - Reinhard Zumkeller, Mar 14 2014 Pairs of consecutive integers of the same height occur infinitely often and in infinitely many different patterns (Garner 1985). - Joe Slater, May 24 2018 REFERENCES R. K. Guy, Unsolved Problems in Number Theory, E16. J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 David Eisenbud and Brady Haran, UNCRACKABLE? The Collatz Conjecture, Numberphile Video, 2016. Lynn E. Garner, On Heights in the Collatz 3n+1 Problem, Discrete Math. 55 (1985) 57-64. J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, m92 (1985), 3-23. K. Matthews, The Collatz Conjecture Eric Weisstein's World of Mathematics, Collatz Problem FORMULA a(2^n) = n. - Bob Selcoe, Apr 16 2015 a(n) = ceiling(log(n*3^A006667(n))/log(2)). - Joe Slater, Aug 30 2017 a(2^k-1) = a(2^(k+1)-1)-1, for odd k>1. - Joe Slater, May 17 2018 EXAMPLE 2 -> 1 so a(2) = 1; 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, with 5 halving steps, so a(3) = 5; 4 -> 2 -> 1 has two halving steps, so a(4) = 2; etc. MAPLE # A014682 T:=proc(n) if n mod 2 = 0 then n/2 else (3*n+1)/2; fi; end; # A006666 t1:=[0]: for n from 2 to 100 do L:=1; p := n; while T(p) <> 1 do p:=T(p); L:=L+1; od: t1:=[op(t1), L]; od: t1; MATHEMATICA Table[Count[NestWhileList[If[OddQ[#], 3#+1, #/2]&, n, #>1&], _?(EvenQ[#]&)], {n, 80}] (* Harvey P. Dale, Sep 30 2011 *) PROG (Haskell) a006666 = length . filter even . takeWhile (> 1) . (iterate a006370) -- Reinhard Zumkeller, Oct 08 2011 (Python) def a(n):     if n==1: return 0     x=0     while True:         if not n%2:             n//=2             x+=1         else: n = 3*n + 1         if n<2: break     return x print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017 (PARI) a(n)=my(t); while(n>1, if(n%2, n=3*n+1, n>>=1; t++)); t \\ Charles R Greathouse IV, Jun 21 2017 CROSSREFS Cf. A006370, A006577, A006667 (tripling steps), A014682, A092892, A127789 (record indices of 2^a(n)/(3^A006667(n)*n)). Sequence in context: A112597 A257700 A334206 * A267830 A163334 A029683 Adjacent sequences:  A006663 A006664 A006665 * A006667 A006668 A006669 KEYWORD nonn,nice,look,easy AUTHOR EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001 Name edited by M. F. Hasler, May 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 10:24 EDT 2021. Contains 342935 sequences. (Running on oeis4.)