OFFSET
0,3
COMMENTS
Here a cycle is of length 3 or more, a star has at least 4 (total) vertices, a wheel has at least 4 (total) vertices, and a path can be an isolated vertex.
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge 1999, problem 5.15
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..440
FORMULA
E.g.f.: exp(x/2+x/(2(1-x))*exp(-x^2/2-x^3/4-x^4/8)/(1-x)^(x/2)* exp(-x-x^2/2-x^3/2 + x exp(x))*exp(-x/2-x^2/4)/(1-x)^(1/2).
MATHEMATICA
nn = 16; a = x/(2 (1 - x)) + x/2; b = x^4/4! + Sum[(n (n - 2)!/2) x^n/n!, {n, 5, nn}]; c = x Exp[x] - x^3/2 - x^2 - x; d = -x/2 - x^2/4; Range[0, nn]! CoefficientList[Series[Exp[a]*Exp[b]*Exp[c]*Exp[d]/(1 - x)^(1/2), {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 10 2011
STATUS
approved