login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006414 Number of nonseparable toroidal tree-rooted maps with n + 2 edges and n + 1 vertices.
(Formerly M4621)
14
1, 9, 40, 125, 315, 686, 1344, 2430, 4125, 6655, 10296, 15379, 22295, 31500, 43520, 58956, 78489, 102885, 133000, 169785, 214291, 267674, 331200, 406250, 494325, 597051, 716184, 853615, 1011375, 1191640, 1396736, 1629144, 1891505, 2186625, 2517480, 2887221 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The number of faces is 1.

a(n) = K(Oa(2,3,n)), Kekulé numbers of certain benzenoid structures (see the Cyvin - Gutman reference).

Sequence of partial sums of A006322. - L. Edson Jeffery, Dec 13 2011

The sequence b(n) = a(n-2) with a(-1) = 0, for n >= 1, is b(n) = n^3*(n^2 - 1)/4!. It is obtained by comparing the result for the powers n^5 from Worpitzky's identity (see a formula in A000584) with the result obtained from the counting of degrees of freedom for the decomposition of a rank 5 tensor in n dimensions via the standard Young tableaux version with 5 boxes corresponding to the seven partitions of 5. The difference of the two versions gives: 10*(binomial(n+3, 5) + 3*binomial(n+2, 5) + binomial(n+1, 5)) = 5*n*(binomial(n+2, 4) + binomial(n+1, 4)) = 10*b(n). See the formula for a(n) below. - Wolfdieter Lang, Jul 18 2019

REFERENCES

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988, p. 105, eq. (ii), and p. 186.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B, Vol. 18, No. 3 (1975), pp. 222-259.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = (n+1)*(n+2)^3*(n+3)/24. - N. J. A. Sloane, Apr 02 2004

a(n) = (n+2)^3*((n+2)^2 - 1)/24. - Paul Richards, Mar 04 2007

G.f.: (1 + 3*x + x^2)/(1-x)^6. - Colin Barker, Feb 21 2012

a(n) = (Sum_{k=0..n+1} k*(n+1)*((n+1)^2 - k^2))/6 for n > 0, which is the sum of all areas of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014

a(n) = A143945(n+2)/8. - J. M. Bergot, Jun 14 2014

Sum_{n>=0} 1/a(n) = 30 - 24*zeta(3). - Jaume Oliver Lafont, Jul 09 2017

a(n) = binomial(n+5, 5) + 3*binomial(n+4, 5) + binomial(n+3, 5) = ((n+2)/2)*(binomial(n+4, 4) + binomial(n+3, 4)), for n >= 0. See a comment above on the sequence b(n) = a(n-2) = n^3*(n^2 - 1)/4!. - Wolfdieter Lang, Jul 19 2019

E.g.f.: (24 + 192*x + 276*x^2 + 124*x^3 + 20*x^4 + x^5)*exp(x)/4!. - G. C. Greubel, Sep 02 2019

Sum_{n>=0} (-1)^n/a(n) = 18*zeta(3) + 48*log(2) - 54. - Amiram Eldar, Jan 09 2022

MAPLE

seq((n+2)^2*binomial(n+3, 3)/4, n=0..40); # G. C. Greubel, Sep 02 2019

MATHEMATICA

Table[(n + 1)*(n + 2)^3*(n + 3)/24, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)

PROG

(Magma) [(n+1)*(n+2)^3*(n+3)/24: n in [0..40]]; // Wesley Ivan Hurt, May 10 2014

(PARI) a(n) = (n+1)*(n+2)^3*(n+3)/24; \\ Michel Marcus, Jul 09 2017

(Sage) [(n+2)^2*binomial(n+3, 3)/4 for n in (0..40)] # G. C. Greubel, Sep 02 2019

(GAP) List([0..40], n-> (n+2)^2*Binomial(n+3, 3)/4 ); G. C. Greubel, Sep 02 2019

CROSSREFS

Differences of A006542 (C(n, 3)*C(n-1, 3)/4).

Cf. A004068, A005891, A006322, A006415, A006434, A006441, A133754, A143945.

Sequence in context: A165372 A264624 A287324 * A344053 A213758 A181960

Adjacent sequences: A006411 A006412 A006413 * A006415 A006416 A006417

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Robert Newstedt (Patternfinder(AT)webtv.net)

Name clarified by Andrew Howroyd, Apr 05 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 02:09 EST 2022. Contains 358712 sequences. (Running on oeis4.)