This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006284 Pierce expansion for Euler's constant. (Formerly M1593) 3
 1, 2, 6, 13, 21, 24, 225, 615, 17450, 23228, 57774, 221361, 522377, 793040, 1706305, 8664354, 19037086, 51965160, 56870701, 124645388, 784244500, 792809072, 3675221276, 42108268014, 53633289500, 56827261536, 67080647365 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335. Eric Weisstein's World of Mathematics, Pierce Expansion FORMULA If u(0) = exp(1/m), where m is an integer >=1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n. Let u(0)=1/gamma and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)) - Benoit Cloitre, Mar 09 2004 MATHEMATICA PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* G. C. Greubel, Nov 14 2016 *) PROG (PARI) r=1/Euler; for(n=1, 30, r=r/(r-floor(r)); print1(floor(r), ", ")) CROSSREFS Cf. A006275, A006276, A006283. Sequence in context: A030416 A277690 A249342 * A048072 A215246 A230537 Adjacent sequences:  A006281 A006282 A006283 * A006285 A006286 A006287 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 23:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)