%I M1593 #29 Nov 19 2016 19:46:15
%S 1,2,6,13,21,24,225,615,17450,23228,57774,221361,522377,793040,
%T 1706305,8664354,19037086,51965160,56870701,124645388,784244500,
%U 792809072,3675221276,42108268014,53633289500,56827261536,67080647365
%N Pierce expansion for Euler's constant.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H G. C. Greubel, <a href="/A006284/b006284.txt">Table of n, a(n) for n = 0..1000</a>
%H Jeffrey Shallit, <a href="http://www.fq.math.ca/Scanned/22-4/shallit1.pdf">Some predictable Pierce expansions</a>, Fib. Quart., 22 (1984), 332-335.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>
%F If u(0) = exp(1/m), where m is an integer >=1, and u(n+1) = u(n)/frac(u(n)) then floor(u(n)) = m*n. Let u(0)=1/gamma and u(n+1) = u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n) = floor(u(n)) - _Benoit Cloitre_, Mar 09 2004
%t PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[EulerGamma, 7!], 25] (* _G. C. Greubel_, Nov 14 2016 *)
%o (PARI) r=1/Euler;for(n=1,30,r=r/(r-floor(r));print1(floor(r),","))
%Y Cf. A006275, A006276, A006283.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, _Jeffrey Shallit_