OFFSET
1,3
REFERENCES
R. W. Floyd and D. E. Knuth, The Bose-Nelson sorting problem, pp. 163-172 of J. N. Srivastava, ed., A Survey of Combinatorial Theory, North-Holland, 1973.
D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.4, Eq. (10).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, preprint.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197.
FORMULA
a(1)=0, a(n) = a(ceiling(n/2)) + a(floor(n/2)) + C(ceiling(n/2), floor(n/2)), n > 1, where the C function is defined in Knuth by C(m,n) = m*n if m*n <= 1 and C(m,n) = C(ceiling(m/2),ceiling(n/2)) + C(floor(m/2),floor(n/2)) + floor((m+n-1)/2)) otherwise.
EXAMPLE
G.f. = x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 12*x^6 + 16*x^7 + 19*x^8 + 26*x^9 + 31*x^10 + ...
MATHEMATICA
c[m_, n_] /; m*n <= 1 = m*n; c[m_, n_] := c[m, n] = c[ Ceiling[m/2], Ceiling[n/2] ] + c[ Floor[m/2], Floor[n/2] ] + Floor[(m + n - 1)/2]; a[1] = 0; a[n_] := a[n] = a[ Ceiling[n/2] ] + a[ Floor[n/2] ] + c[ Ceiling[n/2], Floor[n/2] ]; Table[ a[n], {n, 1, 57}] (* Jean-François Alcover, Jan 19 2012, from formula *)
PROG
(PARI) (c(m, n) = local(i, j); i=ceil(m/2); j=ceil(n/2); if( m*n<2, m*n, c(i, j) + c(m\2, n\2) + (m+n-1)\2)); {a(n) = local(i, j); i=ceil(n/2); j=floor(n/2); if( n<2, 0, a(i) + a(j) + c(i, j))}; /* Michael Somos, Feb 07 2004 */
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved