login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005906 Truncated tetrahedral numbers: (1/6)*(n+1)*(23*n^2+19*n+6).
(Formerly M5002)
3
1, 16, 68, 180, 375, 676, 1106, 1688, 2445, 3400, 4576, 5996, 7683, 9660, 11950, 14576, 17561, 20928, 24700, 28900, 33551, 38676, 44298, 50440, 57125, 64376, 72216, 80668, 89755, 99500, 109926, 121056, 132913, 145520, 158900, 173076 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the number 4-element subsets of {-n,...,0,...n} having sum n. - Clark Kimberling, Apr 05 2012

REFERENCES

J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus (Springer imprint), New York: Springer-Verlag, 1996, ch. 2, pp. 46-47. (In the formula it should read Tet_{3*n-2} not Tet_{3*n-3}).

H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

John Cerkan, Table of n, a(n) for n = 0..10000

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Eric Weisstein's World of Mathematics, Truncated Tetrahedral Number.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = binomial(3*n, 3) - 4*binomial(n+1, 3) = n*(23*n^2-27*n+10)/6.

a(n-1) = Tet(3*n-2) - 4*Tet(n-1) = (1/6)*n*(23*n^2 - 27*n + 10), n >= 1, with Tet(n) = A000292(n). See the Conway-Guy reference, with a corrected misprint. - Wolfdieter Lang, Jan 09 2017

MAPLE

A005906:=(1+12*z+10*z**2)/(z-1)**4; # [Conjectured by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

Table[(1/6) (n + 1) (23 n^2 + 19 n + 6), {n, 0, 35}] (* or *)

Table[Binomial[3 n, 3] - 4 Binomial[n + 1, 3], {n, 36}] (* Michael De Vlieger, Mar 10 2016 *)

PROG

(PARI) a(n)=(n+1)*(23*n^2+19*n+6)/6 \\ Charles R Greathouse IV, Feb 22 2017

CROSSREFS

Cf. A000292.

Sequence in context: A100186 A271913 A178574 * A247663 A235643 A211031

Adjacent sequences:  A005903 A005904 A005905 * A005907 A005908 A005909

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 20 1999

Corrected by T. D. Noe, Nov 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 29 11:38 EDT 2017. Contains 285604 sequences.