login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005772 Number of permutations of length n with 2 cycle lengths.
(Formerly M2978)
6
3, 14, 95, 424, 3269, 21202, 178443, 1622798, 17064179, 177093256, 2293658861, 29296367476, 416567286225, 6250052633294, 103272943796399, 1717954871163982, 32068960264609523, 601640759502181648, 12257756112146028309, 257187849583000601516 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 3..200

H. S. Wilf, Three problems in combinatorial asymptotics, J. Combin. Theory, A 35 (1983), 199-207.

MAPLE

with(numtheory): with(combinat):

a:= n-> add(add(add((i-1)!^j*(d-1)!^((n-i*j)/d)*

        multinomial(n, i$j, d$((n-i*j)/d))/j!/((n-i*j)/d)!,

        d=select(x->x<i, divisors(n-i*j))), j=1..n/i), i=2..n-1):

seq(a(n), n=0..30);  # Alois P. Heinz, Feb 01 2014

MATHEMATICA

multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := Sum[Sum[Sum[(i - 1)!^j*(d-1)!^((n-i*j)/d)*multinomial[n, Join[Array[i&, j], Array[d&, ((n - i*j)/d)]]]/j!/((n-i*j)/d)!, {d, Select[If[n == i*j, {}, Divisors[n - i*j]], #<i&]}], {j, 1, n/i}], {i, 2, n-1}]; Table[a[n], {n, 3, 30}] (* Jean-Fran├žois Alcover, Nov 12 2015, after Alois P. Heinz *)

CROSSREFS

Column k=2 of A218868.

Sequence in context: A091906 A214378 A094369 * A233083 A053984 A113181

Adjacent sequences:  A005769 A005770 A005771 * A005773 A005774 A005775

KEYWORD

nonn

AUTHOR

Simon Plouffe

EXTENSIONS

More terms from Vladeta Jovovic, Nov 02 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 22:32 EST 2018. Contains 299297 sequences. (Running on oeis4.)