login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005769
Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex is strictly to the right of the rightmost top vertex.
(Formerly M4911)
3
1, 13, 110, 758, 4617, 25895, 136949, 693369, 3395324, 16197548, 75675657, 347624505, 1574756959, 7051383905, 31266981002, 137492793602, 600295660953, 2604690331787, 11240698270037, 48279130088017, 206486210282936, 879807455701208, 3736101981855305
OFFSET
6,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M.-P. Delest and G. Viennot, Algebraic languages and polyominoes enumeration, Theoretical Computer Sci., 34 (1984), 169-206.
FORMULA
a(n) = A005436(n) - A005768(n) - A005770(n).
G.f.: x^4 * (2 - 20*x + 75*x^2 - 127*x^3 + 95*x^4 - 27*x^5 + 4*x^6) / ((1 - 2*x^(1/2))^2 * (1 + 2*x^(1/2))^2 * (1 - 2*x) * (1 + x^(1/2) - x)^2 * (1 - x^(1/2) - x)^2) - 2*x^4 * (1 - 4*x)^(-3/2). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
MATHEMATICA
DeleteCases[CoefficientList[Series[x^4*(2 - 20 x + 75 x^2 - 127 x^3 + 95 x^4 - 27 x^5 + 4 x^6)/((1 - 2 x^(1/2))^2*(1 + 2 x^(1/2))^2*(1 - 2 x) (1 + x^(1/2) - x)^2*(1 - x^(1/2) - x)^2) - 2 x^4*(1 - 4 x)^(-3/2), {x, 0, 27}], x] , 0] (* Michael De Vlieger, Aug 26 2016 *)
CROSSREFS
Sequence in context: A163845 A380001 A075143 * A042941 A021344 A119744
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better description from Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
More terms from Sean A. Irvine, Aug 26 2016
STATUS
approved