OFFSET
1,1
REFERENCES
R. Auer and J. Top, Some genus 3 curves with many points, pp. 163-171 of ANTS 2002, Lect. Notes Computer Sci. 2369 (2002).
J. W. P. Hirschfeld, Linear codes and algebraic codes, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See N_q(3) on page 51.
J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, Compt. Rend. Acad. Sci. Paris, 296 (1983), 397-402; Oeuvres, vol. 3, pp. 658-663.
J.-P. Serre, Nombres de points des courbes algébriques sur F_q, Semin. Theorie Nombres Bordeaux, 1982/83, No. 22; Oeuvres, vol. 3, pp. 664-669.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
W. C. Waterhouse, Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. (4) 2 1969, 521-560.
LINKS
K. Lauter and J.-P. Serre, The maximum or minimum number of rational points on curves of genus three over finite fields, arXiv:math/0104086 [math.AG], 2001; Compos. Math.134 (p. 87-111) 2002.
Jean-Pierre Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402.
Jaap Top, Curves of genus 3 over small finite fields, arXiv:math/0301264 [math.NT], 2003.
EXAMPLE
For q=23 the value is 48: this maximum is attained by the following curve (due to Serre): x^4+y^4+z^4-5(x^2y^2 +y^2z^2 + z^2x^2)=0, over the field with 23 elements.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
EXTENSIONS
More terms from A. E. Brouwer, Sep 15 1997.
Edited by Dean Hickerson, Feb 05 2003 and Feb 23 2003, adding more terms from the paper by Jaap Top.
STATUS
approved