

A005524


karcs on elliptic curves over GF(q).
(Formerly M0475)


0



2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 27, 28, 30, 32, 34, 37, 38, 40, 42, 44, 45, 48, 50, 51, 54, 58, 61, 62, 64, 65, 67, 72, 74, 75, 75
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

The number 235 is the first counterexample to Benoit Cloitre's conjecture: 235 = ((1+1)*(1+1)+1)*((1+1)*((1+1)*((1+1)*((1+1)*(1+1)+1)+1)+1)+1)  using 5*47  needs 19 1's 235 = (1+1)*(1+1+1)*(1+1+1)*((1+1+1)*(1+1)*(1+1)+1)  using 2*3*3*13+1  only needs 17 1's.  Ed Pegg Jr, Apr 14 2004


REFERENCES

J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 3553 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See M_q(1) on page 51.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=2..45.
E T Pegg, Integer Complexity.
Mathematica Information Center, Item 5175, for full code.


CROSSREFS

Cf. A000961 (values of q).
Sequence in context: A154314 A239348 A191881 * A191890 A247814 A082918
Adjacent sequences: A005521 A005522 A005523 * A005525 A005526 A005527


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


STATUS

approved



