login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003731 Number of Hamiltonian cycles in C_5 X P_n. 3
1, 5, 30, 160, 850, 4520, 24040, 127860, 680040, 3616880, 19236840, 102313600, 544168000, 2894227280, 15393318880, 81871340160, 435443220000, 2315960597120, 12317733383040, 65513444349760, 348441653760640, 1853231611930880, 9856649945242240, 52423856531251200 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

F. Faase, Counting Hamiltonian cycles in product graphs

F. Faase, Results from the counting program

Index entries for linear recurrences with constant coefficients, signature (6,-4,2).

FORMULA

a(n) = 6a(n-1) - 4a(n-2) + 2a(n-3), n>3.

G.f.: x*(1-x+4*x^2-2*x^3)/(1-6*x+4*x^2-2*x^3). [Colin Barker, Sep 01 2012]

MATHEMATICA

CoefficientList[Series[(1 - x + 4 x^2 - 2 x^3)/(1 - 6 x + 4 x^2 - 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)

PROG

(MAGMA) I:=[1, 5, 30, 160]; [n le 4 select I[n] else 6*Self(n-1)-4*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 14 2013 *)

CROSSREFS

Sequence in context: A110155 A122995 A254944 * A055838 A318591 A094972

Adjacent sequences:  A003728 A003729 A003730 * A003732 A003733 A003734

KEYWORD

nonn,easy

AUTHOR

Frans J. Faase

EXTENSIONS

More terms from Vincenzo Librandi, Oct 14 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 16:17 EDT 2019. Contains 322310 sequences. (Running on oeis4.)