login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003728 E.g.f. log(1+x*cos(x)).
(Formerly M4208)
2
0, 1, -1, -1, 6, -31, 120, -337, -784, 24705, -288000, 2451679, -14032128, -17936543, 2173889536, -42895630065, 583266662400, -5396647099903, 5119183650816, 1239561882325439, -36754121131294720, 708575518706816481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582

FORMULA

a(0)=0 and for n>=1, a(n)n!*sum(k=1..n-1,((sum(i=0,floor((k-1)/2),(k-2*i)^(n-k)*binomial(k,i)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1))+(-1)^(n-1)*(n-1)!. - Vladimir Kruchinin, Apr 23 2011

MATHEMATICA

With[{nn=30}, CoefficientList[Series[Log[1+Cos[x]x], {x, 0, nn}], x] Range[0, nn]!] (* From Harvey P. Dale, Nov 11 2011 *)

PROG

(Maxima)

a(n) := n! *sum(((sum((k-2*i)^(n-k)*binomial(k, i), i, 0, floor((k-1)/2)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1), k, 1, n-1)+(-1)^(n-1)*(n-1)!; /* Vladimir Kruchinin, Apr 23 2011 */

CROSSREFS

Sequence in context: A143568 A337574 A166786 * A216370 A225425 A267890

Adjacent sequences:  A003725 A003726 A003727 * A003729 A003730 A003731

KEYWORD

sign

AUTHOR

R. H. Hardin, Simon Plouffe

EXTENSIONS

Corrected title, Joerg Arndt, Apr 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 06:19 EST 2020. Contains 338678 sequences. (Running on oeis4.)