login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003728 E.g.f. log(1+x*cos(x)).
(Formerly M4208)
2
0, 1, -1, -1, 6, -31, 120, -337, -784, 24705, -288000, 2451679, -14032128, -17936543, 2173889536, -42895630065, 583266662400, -5396647099903, 5119183650816, 1239561882325439, -36754121131294720, 708575518706816481 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582

FORMULA

a(0)=0 and for n>=1, a(n)n!*sum(k=1..n-1,((sum(i=0,floor((k-1)/2),(k-2*i)^(n-k)*binomial(k,i)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1))+(-1)^(n-1)*(n-1)!. - Vladimir Kruchinin, Apr 23 2011

MATHEMATICA

With[{nn=30}, CoefficientList[Series[Log[1+Cos[x]x], {x, 0, nn}], x] Range[0, nn]!] (* From Harvey P. Dale, Nov 11 2011 *)

PROG

(Maxima)

a(n) := n! *sum(((sum((k-2*i)^(n-k)*binomial(k, i), i, 0, floor((k-1)/2)))*(-1)^((n-k)/2)*((-1)^(n-k)+1))/(2^k*(n-k)!)/k*(-1)^(k-1), k, 1, n-1)+(-1)^(n-1)*(n-1)!; /* Vladimir Kruchinin, Apr 23 2011 */

CROSSREFS

Sequence in context: A303172 A143568 A166786 * A216370 A225425 A267890

Adjacent sequences:  A003725 A003726 A003727 * A003729 A003730 A003731

KEYWORD

sign

AUTHOR

R. H. Hardin, Simon Plouffe

EXTENSIONS

Corrected title, Joerg Arndt, Apr 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 05:58 EST 2019. Contains 320411 sequences. (Running on oeis4.)