login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003729 Number of perfect matchings (or domino tilings) in graph C_{5} X P_{2n}. 0
11, 176, 2911, 48301, 801701, 13307111, 220880176, 3666315811, 60855946601, 1010127453401, 16766766924211, 278305942640176, 4619507031938711, 76677648402694901, 1272746577484955101, 21125893715367851311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.

LINKS

Table of n, a(n) for n=1..16.

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.

F. Faase, Counting Hamilton cycles in product graphs

F. Faase, Results from the counting program

Per Hakan Lundow, Enumeration of matchings in polygraphs, 1998.

Index entries for sequences related to dominoes

Index entries for linear recurrences with constant coefficients, signature (19, -41, 19, -1).

FORMULA

a(n) = 19a(n-1) - 41a(n-2) + 19a(n-3) - a(n-4), n>4.

G.f. x*(11-33*x+18*x^2-x^3)/(1-19*x+41*x^2-19*x^3+x^4) . [From R. J. Mathar, Mar 11 2010]

MATHEMATICA

Rest[CoefficientList[Series[x (11-33x+18x^2-x^3)/(1-19x+41x^2- 19x^3+ x^4), {x, 0, 20}], x]] (* or *) LinearRecurrence[{19, -41, 19, -1}, {11, 176, 2911, 48301}, 20] (* Harvey P. Dale, Jul 16 2011 *)

CROSSREFS

Sequence in context: A280442 A218330 A196664 * A230388 A027398 A081740

Adjacent sequences:  A003726 A003727 A003728 * A003730 A003731 A003732

KEYWORD

nonn,easy

AUTHOR

Frans J. Faase

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 27 11:25 EDT 2017. Contains 288788 sequences.