login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003729
Number of perfect matchings (or domino tilings) in graph C_{5} X P_{2n}.
2
11, 176, 2911, 48301, 801701, 13307111, 220880176, 3666315811, 60855946601, 1010127453401, 16766766924211, 278305942640176, 4619507031938711, 76677648402694901, 1272746577484955101, 21125893715367851311
OFFSET
1,1
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden.
FORMULA
a(n) = 19a(n-1) - 41a(n-2) + 19a(n-3) - a(n-4), n>4.
G.f. x*(11-33*x+18*x^2-x^3)/(1-19*x+41*x^2-19*x^3+x^4) . [From R. J. Mathar, Mar 11 2010]
MATHEMATICA
Rest[CoefficientList[Series[x (11-33x+18x^2-x^3)/(1-19x+41x^2- 19x^3+ x^4), {x, 0, 20}], x]] (* or *) LinearRecurrence[{19, -41, 19, -1}, {11, 176, 2911, 48301}, 20] (* Harvey P. Dale, Jul 16 2011 *)
CROSSREFS
Sequence in context: A218330 A365034 A196664 * A230388 A027398 A305970
KEYWORD
nonn,easy
STATUS
approved