login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003652
Class number of real quadratic field with discriminant A003658(n), n >= 2.
(Formerly M0051)
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 4, 1, 1, 1, 1, 1, 2
OFFSET
2,12
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. R. Finch, Class number theory
Steven R. Finch, Class number theory [Cached copy, with permission of the author]
Eric Weisstein's World of Mathematics, Class Number
MATHEMATICA
NumberFieldClassNumber[Sqrt[#]] &/@ Select[Range[500], FundamentalDiscriminantQ] (* G. C. Greubel, Mar 01 2019 *)
PROG
(PARI) for(n=1, 500, if(isfundamental(n) && !issquare(n), print1(quadclassunit(n).no, ", "))) \\ G. C. Greubel, Mar 01 2019
(Sage) [QuadraticField(n, 'a').class_number() for n in (1..500) if is_fundamental_discriminant(n) and not is_square(n)] # G. C. Greubel, Mar 01 2019
CROSSREFS
Sequence in context: A336137 A371735 A088323 * A071625 A331592 A353745
KEYWORD
nonn
EXTENSIONS
Offset corrected by Jianing Song, Mar 31 2019
STATUS
approved