This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003654 Squarefree integers n such that fundamental unit of Q(sqrt(n)) has norm -1. Also, squarefree integers n such that Pell equation x^2 - n y^2 = -1 is soluble. (Formerly M1366 N0529) 12
 2, 5, 10, 13, 17, 26, 29, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317, 337, 346, 349, 353, 362 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The squarefree elements of A003814 and A172000. - Max Alekseyev, Jun 01 2009 Together with {1} and A031398 forms a disjoint partition of A020893. That is, A020893 = {1} U A003654 U A031398. - Max Alekseyev, Mar 09 2010 REFERENCES D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241. M. Kraitchik, Recherches sur la ThÃ©orie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 46. D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 56. P. Seeling, Ueber die Aufloesung der Gleichung x^2-Ay^2=+-1 in ganzen Zahlen, wo A positiv und kein vollstaendiges Quadrat sein muss, Archiv der Mathematik und Physik, Vol. 52 (1871), p. 40-49. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS R. J. Mathar, Table of n, a(n) for n = 1..9446 S. R. Finch, Class number theory MAPLE isA003654 := proc(n)     local cf, p ;     if not numtheory[issqrfree](n) then         return false;     end if;     for p in numtheory[factorset](n) do         if modp(p, 4) = 3 then             return false;         end if;     end do:     cf := numtheory[cfrac](sqrt(n), 'periodic', 'quotients') ;     type( nops(op(2, cf)), 'odd') ; end proc: A003654 := proc(n)     option remember;     local a;     if n = 1 then         2;     else         for a from procname(n-1)+1 do             if isA003654(a) then                 return a;             end if;         end do:     end if; end proc: seq(A003654(n), n=1..40) ; # R. J. Mathar, Oct 19 2014 CROSSREFS Cf. A031396, A031397, A003814, A249021. Sequence in context: A145017 A031396 A003814 * A271787 A047617 A190437 Adjacent sequences:  A003651 A003652 A003653 * A003655 A003656 A003657 KEYWORD nonn AUTHOR N. J. A. Sloane, Mira Bernstein. Entry revised by N. J. A. Sloane, Jun 11 2012 EXTENSIONS Edited by Max Alekseyev, Mar 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 15:57 EST 2019. Contains 319364 sequences. (Running on oeis4.)