login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003649 Class number of real quadratic field Q(sqrt f), where f is the n-th squarefree number A005117(n).
(Formerly M0054)
5
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 3, 2, 4, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,6

REFERENCES

┼×aban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 322-326, Theorem 12.6.1, Example 12.6.7, Table 8.

D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.

M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, p. 432.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 2..6083 (squarefree numbers < 10000)

S. R. Finch, Class number theory

Index entries for sequences related to quadratic fields

MATHEMATICA

DeleteCases[Table[Boole[FreeQ[FactorInteger[n], {_, k_ /; k > 2}]] * NumberFieldClassNumber[Sqrt[n]], {n, 100}], 0] (* Alonso del Arte, Aug 26 2014 *)

PROG

(PARI) for(n=2, 1e3, if(issquarefree(n), print1(qfbclassno(n*if(n%4>1, 4, 1))", "))) \\ Charles R Greathouse IV, Feb 19 2013

CROSSREFS

Cf. A000924.

Sequence in context: A276438 A210960 A193509 * A216784 A256067 A256554

Adjacent sequences:  A003646 A003647 A003648 * A003650 A003651 A003652

KEYWORD

nonn

AUTHOR

N. J. A. Sloane and Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 09:47 EDT 2017. Contains 283985 sequences.